tìm n thuộc N để \(\frac{18n+3}{21n+7}\)tối giản
tìm n thuộc N để 18n+3/21n+7 tối giản
$\frac{18n+3}{21n+7}$18n+321n+7 không tối giản
gọi $d\inƯC\left(18n+3;21n+7\right)$d∈ƯC(18n+3;21n+7)
18n+3 chia hết cho d=>126n+21 chia hết cho d
21n+7 chia hết cho d=>126n+42 chia hết cho d
=>21 chia hết cho d=>d=3;7
xét d=3=>21n+7 chia hết cho 3 (loại)
=>d=7=>36n+6 chia hết cho 7=>35d+(n+6) chia hết cho 7
=>n+6 chia hết cho 7=>n-1 =7k=>n=7k+1
vậy để 18n+3/21n+7 tg thì n=7k+1
tìm n thuộc N để 18n+3/21n+7 là P/S tối giản
tÌM n thuộc Z để 18n + 3/ 21n +7 tối giản
Thanks trước nha!!!!
C1:
(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản <=> (3n+4)/(21n+7) tối giản
<=> (21n+7)/(3n+4) tối giản <=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản <=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3)
(*) <=> 3n+4 không chia hết cho 7 <=> 3n # 7k+3 trong đó k là bội của 3 (vì VT là bội của 3) <=> 3n # 21m+3 (với k = 3m) <=> n # 7m+1 (m thuộc Z)
Trả lời : n # 7m+1 (m thuộc Z
C2:
Gọi ƯCLN (18n+3) và (21n+7) là d
ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28
ta có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21)
=>n khác 7a+1
Tìm n thuộc Z để 18n+3 / 21n+7 là phân số tối giản? Giúp mình nha !?
Tìm n để \(\frac{18n+3}{21n+7}\)là phân số tối giản
(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản
<=> (3n+4)/(21n+7) tối giản
<=> (21n+7)/(3n+4) tối giản
<=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản
<=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3) (*)
<=> 3n+4 không chia hết cho 7 <=> 3n \(\ne\) 7k+3 trong đó k là bội của 3 (vì VT là bội của 3)
<=> 3n \(\ne\) 21m+3 (với k = 3m) <=> n \(\ne\) 7m+1 (m \(\in\) Z)
Vậy n \(\ne\) 7m+1 (m \(\in\) Z) để phân số đã cho tối giản.
(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản
<=> (3n+4)/(21n+7) tối giản
<=> (21n+7)/(3n+4) tối giản
<=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản
<=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3) (*)
<=> 3n+4 không chia hết cho 7 <=> 3n \ne̸= 7k+3 trong đó k là bội của 3 (vì VT là bội của 3)
<=> 3n \ne̸= 21m+3 (với k = 3m) <=> n \ne̸= 7m+1 (m \in∈ Z)
Vậy n \ne̸= 7m+1 (m \in∈ Z) để phân số đã cho tối giản.
(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản
<=> (3n+4)/(21n+7) tối giản
<=> (21n+7)/(3n+4) tối giản
<=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản
<=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3) (*)
<=> 3n+4 không chia hết cho 7 <=> 3n \ne̸= 7k+3 trong đó k là bội của 3 (vì VT là bội của 3)
<=> 3n \ne̸= 21m+3 (với k = 3m) <=> n \ne̸= 7m+1 (m \in∈ Z)
Vậy n \ne̸= 7m+1 (m \in∈ Z) để phân số đã cho tối giản.
Tìm tất cả các số nguyên dương n để các phân số sau là tối giản: \(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
Tìm tất cả các số nguyên n để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p
suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p
vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7
do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7
vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.
BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI
BAN CHƯA RÚT GỌN HẲN
Tìm tất cả các số n thuộc N để phân số :
18n + 3 là phân số tối giản
21n + 7
Bài này tương tự bài lúc nãy thôi
Bạn hãy dựa vào cách làm của mình để làm
Chúc bạn may mắn!
Tìm số nguyên n để (18n+3)/(21n+7) là phân số tối giản
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)⋮d→21⋮d→d∈{3;7}. Hiển nhiên d≠3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d≠7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7↔18(n−1) không chia hết cho 7↔n−1 không chia hết cho 7↔n≠7k+1(k∈n)
Kết luận: Với n≠7k+1(k∈N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
bít làm nhưng dài quá ko muốn trình bày, sorry