Cho P = \(\frac{3}{x-3}\)Hãy tìm x để P^2 - P + 1 có giá trị nhỏ nhất
cho B : \(\frac{1}{2}\cdot|4-3\cdot x|-2\)
a,tìm x để B = 1
b,tìm x để B có giá trị nhỏ nhất
tìm giá trị nhỏ nhất đó
Bước đến nhà em bóng xế tà
Đứng chờ năm phút bố em ra
Lơ thơ phía trước vài con chó
Lác đác đằng sau chiếc chổi chà
Sợ quá anh chuồn quên đôi dép
Bố nàng ngoác mỏ đứng chửi cha
Phen này nhất quyết thuê cây kiếm
Trở về chém ổng đứt làm ba
CHO BIỂU THỨC : \(A=\frac{1}{2}\cdot|5-3\cdot X|-\frac{1}{3}\)
A, TÌM X ĐỂ A = \(\frac{1}{2}\)
B,TÌM X ĐỂ A CÓ GIÁ TRỊ NHỎ NHẤT.TÌM GIÁ TRỊ NHỎ NHẤT ĐÓ
LÀM NHANH 2 LIKE
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
giúp mik với , giải thích dể hiểu cho mik với :D
a.với giá trị nào của x thì P = | x + \(\frac{3}{2}\) | có giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất.
b.với giá trị nào của x thì P = | 3 - x | + \(\frac{2}{5}\) có giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
b) có giá trị tuyệt đối của 3-x >=0 với mọi x
=> (giá trị tuyết đối của 3-x) + 2/5 >=2/5
=> P>=2/5
P = 2/5 khi 3-x=0 <=> x=3
Vậy P có giá trị nhỏ nhất là 2/5 khi x=3
Tìm x để \(\left(\frac{1^2}{3^2}\right)\)có gia trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
1, Cho B : \(\frac{1}{2}\cdot|4-3\cdot x|-2\)
a, Tìm x để B = 1
b, Tìm x để B có giá trị nhỏ nhất (Min).
tìm giá trị nhỏ nhất đó
làm nhanh đúng dưới hạn hôm nay = 2 like
a)
1/2 . | 4 − 3 · x | − 2 = 1
1/2 . | 4 − 3 · x | = 1 + 2
1/2 . | 4 − 3 · x | = 3
| 4 − 3 · x | = 3 : 1/2
| 4 − 3 · x | = 6
Th 1 : 4 - 3 .x = 6
=> 3 . x = 4 - 6
[ Loại . Vì x thuộc Z ( vì lớp 6 ) ]
Th2 : 4 - 3 . x = ( - 6)
3 . x = 4 - ( - 6 )
3 . x = 4 + 6
3 . x = 10
x = 10 : 3 = 10/3
Vậy X = 10/3
cho A = \(\frac{3}{2+\sqrt{2x+3-x^2}}\)
a) Tìm x để A có nghĩa.
b) Tìm giá trị nhỏ nhất và giá trị lớn nhất của A.
a) Để A có nghĩa :
\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\)
\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\)
\(\Leftrightarrow-\left(x-1\right)^2\ge-4\)
\(\Leftrightarrow\left(x-1\right)^2\le4\)
\(\Rightarrow3\ge x\ge-1\)
Vậy.....
cho P= \(\frac{x^4+x^3-2\cdot x^2-3\cdot x-3}{x^4+2\cdot x^3-2\cdot x^2-6\cdot x-3}\)
a. rút gọn P
b. xác định giá trị của x để P(x) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó