Chứng minh x100000-1 = (x-1)(x99999 + x99998 + x99997+ ...+ 1) với mọi x E R
Chứng minh bất đẳng thức sau :
\(e^x\ge x+1\) với mọi \(x\in R\)
\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)
Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)
Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)
và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)
Xét bảng biến thiên :
Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)
hay : \(e^x-x-1\ge0\) với mọi \(x\in R\)
=> Điều phải chứng minh
Chứng minh:
a) x2+2xy+1+y2 >0 với mọi x,y thuộc R
b) x-x2-1 <0 với mọi x thuộc R
a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)
nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)
Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)
b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)
Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)
a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y
=>x2+2xy+1+y2>1>0
b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x
=>x-x2-1<0
TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!
chứng minh rằng x^2-x+1>0 với mọi x thuộc R
x^2-x+1>0
<=>x2-2x.1/2+1/4+3/4>0
<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R
Mọi người giúp với
Tìm x
x^2+5x=0
Chứng minh x^2-2x+3>0 với mọi số thực x
Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K
a) Chứng minh IK là đường trung bình của tam giác ABC
b) Tính độ dài IK với BC=12cm
c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành
Cho tam giác ABC có A = 90độ , AC = 5cm , BC = 13cm . Gọi I là trung điểm của cạnh AB , D là điểm đối xứng với C qua I
a) Tứ giác ADBC là hình gì ? Vì sao?
b) Gọi M là trung điểm của cạnh BC . Chứng minh MI vuông góc AB
c) tính diện tích tam giác ABC
Chứng minh rằng: Với mọi x, y ϵ R ta có: \(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{1}{4}\)
Áp dụng BĐT Cosi:
\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
Chứng minh \(x-x^2-1< 0\) với mọi x thuộc R
ta có x-x2-1
=\(-x^2+x-1\)
=\(-\left(x^2-x+1\right)\)
=\(-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\right)\)
=\(-\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
=\(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
ta có \(-\left(x-\frac{1}{2}\right)^2< 0\\ \)
\(-\frac{3}{4}< 0\)
=> 2 vế công lai luôn nhỏ hơn 0 với mọi x thuộc R
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
Cho đa thức P(x)=ax4+bx3+cx2+dx+e, biết P(1)=P(-1), P(2)=P(-2).
Chứng minh P(x)=P(-x) với mọi x
( giải giúp với ạ? )
Chứng minh rằng:
a) \(\sqrt{x^2+2x+5}\ge2\) với mọi x∈R
b) \(x>\sqrt{x}\) với mọi x>1
a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)Vì \(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)
b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)
\(\Leftrightarrow x\left(x-1\right)\ge0\)
Vì \(x>1\rightarrow x>0;x-1>0\)
\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)
hay \(x>\sqrt{x}\) (đpcm)
Chúc bạn học tốt!
a)
√(x^2+2x+5)>2
<=>x^2+2x+5>4
<=>x^+2x+1>0
(x+1)^2 > 0 =>dpcm
b)
x>1<=>x^2>x
x(x-1)>0
luon dung
Chứng minh
x2-2xy+y2+1>0 với mọi x,y thuộc R
x2-2xy+y2+1
=(x2-2xy+y2)+1
=(x-y)2+12
mà \(\left(x-y\right)^2\ge0;1^2>0\)
=> x2-2xy+y2+1 > 0 với mọi x,y \(\in\) R