thu gon da thuc va sap xep da thuc
f (x)=5x^2-1+3x+x^2-5x^2
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
Cho A ( x ) = 8-5x+3x2-15-3x+16
B ( X ) =5x-2x2=4x-1-x2-3x
a) thu gon A va B sap xep theo so mu giam dan
b) tim da thuc C biet C ( x) + A ( x)= B ( x)
\(A\left(x\right)=8-5x+3x^2-15-3x+16=3x^2-8x+9\)
\(B\left(x\right)=5x-2x^2+4x-1-x^2-3x=-3x^2+6x-1\)
\(C\left(x\right)=B\left(x\right)-A\left(x\right)=\left(-3x^2+6x-1\right)-\left(3x^2-8x+9\right)\)
\(C\left(x\right)=-6x^2+14x-10\)
cho 2 da thuc f(x)=5x^2-7+6x-8x^3-x^4 a,sap xep theo luy thua giam dan cua bien b, tinh f(x)+g(x) va f(x)-g(x)
cho hai da thuc:
\(P\left(x\right)=2x^3-5x^2-3x^4+7-4x\)va \(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
a)sap xep da thuc P(x) va Q(x) theo luy thua giam dan cua bien
b)tinh P(x) + Q(x) va P(x) - Q(x)
A=1/3(xy^2)^2.(-1/2x^2y)^2.4/5x^3
B=-2x^4y.1/4x^2y^2.4/5x^3
Thu gon da thuc tren
Xac dinh he so,tim bac cua da thuc vua tim dc
Tinh A+B
va A-B
Bai 2
A=15x^2y-7xy^2+8-y^3+7xy^2+2y^3-12x^2y-1/2
Thu gon da thuc
Tim bac cua da thuc
Tinh gia tri cua da thuc A tai x=-1/2,y=1
Thu gon da thuc:
\(F\left(x\right)=x^2-3x^3-\sqrt{25}+\frac{1}{2}x-\left(-3x^3+\frac{5x}{2}-\sqrt{36}\right)\)
\(F\left(x\right)=x^2-3x^3-\sqrt{25}+\frac{1}{2}x-\left(-3x^3+\frac{5x}{2}-\sqrt{36}\right)\)
=> \(F\left(x\right)=x^2-3x^3-5+\frac{1}{2}x+3x^3-\frac{5x}{2}+6\)
=> \(F\left(x\right)=x^2+\left(3x^3-3x^3\right)+\left(6-5\right)+\left(\frac{x}{2}-\frac{5x}{2}\right)\)
=> \(F\left(x\right)=x^2+1-2x\)
Cho da thuc M(x)=3x2-5x3+x+x3-x2+4x3-3x-4
A)thu gon da thuc
B)tính M(0) và M(2)
A(x)= (x^4 + 4x^2-5x +1)^1994
tinh tong cac he so cua hang tu cua da thuc nhan dc khi da khai trien va viet duoi dang thu gon.
tổng các hệ số trong đa thức một biến bằng giá trị của đa thức đó tại giá trị của biến bằng 1
A(1)=\(\left(1^4+4.1^2-5.1+1\right)^{1994}\)
\(\Rightarrow A\left(1\right)=\left(1+4-5+1\right)^{1994}=1^{1994}=1\)
vậy tổng các hệ số trong A(x) là 1