\(\frac{x+1}{19}\)+ \(\frac{x+2}{18}\)= \(\frac{x+3}{17}\)+ \(\frac{x+4}{16}\)
tìm x
16, giải phương trình.
1, \(\frac{x+5}{65}+\frac{x+10}{60}=\frac{x+15}{55}+\frac{x+20}{50}\)
2, \(\frac{x+91}{81}+\frac{x+92}{82}+\frac{x+93}{83}=3\)
3, \(\frac{59-x}{19}+\frac{58-x}{18}=\frac{57-x}{17}+\frac{56-x}{16}\)
4, \(\frac{x}{15}+\frac{x+1}{16}+\frac{x+2}{17}+\frac{x+3}{18}+\frac{x+4}{19}=5\)
Tính bằng cách thuận tiện nhất .
\(\frac{39}{16}:\frac{5}{8}-\frac{17}{16}:\frac{5}{18}+\frac{4}{5}\)
\(\frac{16}{17}x\frac{12}{19}+\frac{16}{17}x\frac{7}{19}-\frac{2}{3}\)
Trả lời
Sửa đề câu a 1 tí
a)39/16:5/8-17/16:5/8+4/5
=(39/16-17/16):5/8+4/5
=11/8:5/8+4/5
=11/5+4/5
=15/5=3
b)16/17.12/19+16/17.7/19-2/3
=16/17.(12/19+7/19)-2/3
=16/17-2/3
=48/56-14/56
=34/56=17/28
Học tốt !
Giải pt:
a) \(\frac{x^2+2x-16}{x^2-x-12}+1=\frac{2x+1}{x+3}+\frac{3x-8}{x-4}\)
b) \(\frac{2x-1}{x+2}+\frac{7x+9}{\left(x+2\right)\left(x-1\right)}=\frac{3x-1}{x-1}\)
c) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=\frac{x+20}{1}+\frac{x+19}{2}+\frac{x+18}{3}\)
Giải giúp mình với ạ :((
a,\(\frac{X}{Y+Z+1}=\frac{Y}{X+Z+3}=\frac{Z}{Y+X-4}=X+Y+Z\)+Z
b,\(\frac{x-18}{x+4}=\frac{x-17}{x+16}\)tìm x
a, \(\frac{x}{y+z+1}=\frac{y}{x+z+3}=\frac{z}{x+y-4}=\frac{x+y+z}{y+z+1+x+z+3+x+y-4}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(x+y+z=\frac{1}{2};\frac{x}{y+z+1}=\frac{1}{2};\frac{y}{x+z+3}=\frac{1}{2};\frac{z}{x+y-4}=\frac{1}{2}\)
=>\(\hept{\begin{cases}y+z+1=2x\\x+z+3=2y\\x+y-4=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+3=3y\\x+y+z-4=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+3\\3z=\frac{1}{2}-4\end{cases}}}\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{7}{2}\\3z=\frac{-7}{2}\end{cases}}\)
đến đây dễ rồi
b, =>(x-18)(x+16)=(x+4)(x-17)
=>x2+16x-18x-288=x2-17x+4x-68
=>x2-2x-288-x2+13x+68=0
=>11x-220=0
=>11x=220
=>x=20
Giair phương trình sau:
1. (x - 3) (x + 4) = (2 - x) (1 - x)
2. \(\frac{2x}{15}\) - \(\frac{15-2x}{10}\) = \(\frac{7}{6}\)
3. \(\frac{x}{15}\) + \(\frac{x+1}{16}\) + \(\frac{x+2}{17}\) + \(\frac{x+3}{18}\) + \(\frac{x+4}{19}\) = 5
4. \(\frac{x+1}{11}\) + \(\frac{2x-5}{15}\) = \(\frac{3x-47}{17}\) - \(\frac{4x-59}{19}\)
5. x2 + 9x + 20 = 0
6. x3 + 2x - 3 = 0
5:x^2 +4x +5x + 20 =0
(x^2 + 4x).(5x+20)
x(x+4).5(x+4)
(x+4).(x+5)
[x+5=0 ->x=-5
[x+4=0 ->x=-4
Giải pt:
a) \(\frac{^{x^2+2x-16}}{x^2-x-12}+1=\frac{2x+1}{x+3}+\frac{3x-8}{x-4}\)
b) \(\frac{2x-1}{x+2}+\frac{7x+9}{\left(x+2\right)\left(x-1\right)}=\frac{3x-1}{x-1}\)
c) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=\frac{x+20}{1}+\frac{x+19}{2}+\frac{x+18}{3}\)
Giải phương trình:
a)\(\frac{x+81}{19}+\frac{x+82}{18}=\frac{x+84}{16}+\frac{x+85}{15}\)
b)\(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
c)\(\frac{x+19}{3}+\frac{x+13}{5}=\frac{x+7}{7}+\frac{x+1}{9}\)
d)\(\frac{2-x}{2018}-1=\frac{1-x}{2019}-\frac{x}{2020}\)
Tìm x biết : \(\frac{x-18}{x+4}=\frac{x-17}{x+16}\)
Đặt \(\frac{x-18}{x+4}=\frac{x-17}{x+16}=k\)
Suy ra: \(x-18=k\left(x+4\right)\Rightarrow x=\frac{4k+18}{1-k}\left(1\right)\\ x-17=k\left(x+16\right)\Rightarrow x=\frac{16k+17}{1-k}\left(2\right)\)
Từ (1) và (2) ta được: \(4k+18=16k+17,\) suy ra \(k=\frac{1}{12},x=20\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)