Chứng minh: \(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{97.99}\)>32%
Chứng minh: \(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{97.99}\)>32%
Đặt : \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
Do \(\frac{32}{99}>32\%\)nên \(A>32\%\left(đpcm\right)\)
Chứng minh rằng:\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+..........+\(\frac{2}{97.99}\)> \(\frac{8}{25}\)
Gọi 2/3.5 +2/5.7 +2/7.9 +...+2/97.99 là A
A=2/3.5 +2/5.7 +2/7.9+...+ 2/97.99
A= 1.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)
A=1.(1/3-1/99)
A=1.32/99
A=32/99
Ta có: A>8/25
=>32/99>8.25
Vậy 2/3.5+2/5.7+2/7.9+...+2/97.99>8/25
k cho mk nha!!!
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=\frac{8}{25}\)
Tính nhanh :
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{95.97}+\frac{2}{97.99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
Tự tính
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
32/99
k với nghe bạn
và chúc chueeuf nay thi tốt
Tính
M = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right).\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}x\frac{32}{99}=\frac{32}{198}\)
bn tự rút gọn nha mk mới làm tắt đó
Ta có : \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
tính:a/\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{97.99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+.................+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..................+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{32}{99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Ta có: \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Tinh
F=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)có lời giải nhé😘😘😘
F = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
F = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
F = \(\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-\left(\frac{1}{9}-\frac{1}{9}\right)-...-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
F = \(\frac{1}{3}-\frac{1}{99}\)
F = \(\frac{32}{99}\)
\(F=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow F=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow F=\frac{32}{99}\)
\(F=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(F=1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(F=1.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(F=1.\frac{32}{99}\)
\(F=\frac{32}{99}\)
Tính giá trị của biểu thức
A =\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times....\times\left(\frac{1}{99}+1\right)\)
Chứng tỏ
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}>32\%\)
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%
Câu đầu tiên:
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{100}{99}=\frac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{3\cdot4\cdot5\cdot...\cdot99\cdot2}=\frac{100}{2}=50\)
Câu thứ 2:
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}\)
Tính nhanh
M = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{97.99}\)
Ta có: \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{97.99}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{97}-\frac{1}{99}\)
\(M=\frac{1}{3}-\frac{1}{99}\)
\(M=\frac{32}{99}\)
\(M=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(M=\frac{1}{3}-\frac{1}{99}\)
\(M=\frac{32}{99}\)
Tính nhanh:
M= \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
Giúp mình với!
M=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
M=\(\frac{1}{3}-\frac{1}{99}\)
M=\(\frac{32}{99}\)
TICK ỦNG HỘ NHA