Cho \(P\left(x\right)=\)\(x^4-2015x^3+2015x^2-2015x+2015\)Tính P(2014)
\(f\left(x\right)=x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+...-2015x+2015\). Khi đó f(2014)=...
A=2015-2015x+2015x2-2015x3+2015x4-2015x5+...+2015x2015
Tính giá tri cua bieu thuc A tai x=2014
A = 2015 - 2015x + 2015x2 - 2015x3 + 2015x4 - 2015x5 +.....+ 2015x2015
A = 2015.(1-x+x2-x3+x4-x5+...+x2015)
Thay x = 2014 và đặt
B = 1-2014+20142-20143+20144-20145+...+20142015
2014B = 2014-20142+20143-20144+20155-20146+...+20142016
2015B = 2014B + B = 1 + 20142016
=> B = \(\frac{1+2014^{2016}}{2015}\)
=> A = 2015.\(\frac{1+2014^{2016}}{2015}\)
=> A = 1+ 20142016
Tính giá trị biểu thức:
a. x^4-2223x^3+2223x^2-2223x+2223 tại x=2222
b.x^14-2015x^13+2015x^12-2015x^11+...+2015x^2-2015x+2015 tại x=2014
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha
Tính giá trị biểu thức:
a. x^4-2223x^3+2223x^2-2223x+2223 tại x=2222
b.x^14-2015x^13+2015x^12-2015x^11+...+2015x^2-2015x+2015 tại x=2014
P(x)=x^2016-2015 x^2015-2015x^2014-...-2015x^2-2015x=1.tính P(2016)
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
cái chỗ bằng 1 là cộng 1 đấy
tek tức là nó = 2017
đúng không
Cho: \(f\left(x\right)=x^{17}-2015x^{16}+2015x^{15}-2015x^{14}+....+2015x-1 \)
Tính\(f\left(2014\right)\)
Ta có :\(x=2014\Rightarrow2015=x+1\)
\(\Rightarrow f\left(2014\right)=x^{17}-\left(x+1\right)x^{2016}+\left(x+1\right)x^{2015}-.....+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{2016}+x^{2016}+x^{2015}-....+x^2+x-1\)
\(=x-1=2014-1=2013\)
Cho f(x) = \(x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+.....-2015x+2015.\)
Tính f(2014)
Tính giá trị biểu thức :
x4 - 2015x3 + 2015x2 - 2015x + 2015
biết x = 2014
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)
cho đa thức P(x)=x2016 -2015x2015 -2015x2014 - ..... -2015x2 -2015x +1.Tính P(2016)