Cho \(a,b,c\ge1\) CMR
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+\frac{4ab}{1+ab}+\frac{4bc}{1+bc}+\frac{4ac}{1+ac}\ge9\)
Cho a, b, c \(\ge\)1 . Chứng minh
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+\frac{4ab}{1+ab}+\frac{4bc}{1+bc}+\frac{4ac}{1+ac}\ge9\)
Không có điều kiện gì nữa à? Chẳng hạn như a + b +c = 3;..
cho a,b,c là các số thực thỏa mãn :\(a\ge1,b\ge1,c\ge1\)
chứng minh :
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+\frac{4ab}{1+ab}+\frac{4bc}{1+bc}+\frac{4ca}{1+ca}\ge9\)
cho a+b+c=0 .
Chứng minh a, \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)=1
b, \(\frac{4bc-a^2}{bc+2a^2}+\frac{4ab-c^2}{ab+2c^2}+\frac{4ac-b^2}{ac+2b^2}\)=3
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
Cho các số thực a,b,c thỏa mãn điều kiện \(a\ge1,b\ge1,c\ge1\)
Chứng minh rằng : \(\dfrac{1}{2a-1}+\dfrac{1}{2b-1}+\dfrac{1}{2c-1}+\dfrac{4ab}{ab+1}+\dfrac{4bc}{bc+1}+\dfrac{4ac}{ac+1}\ge9\)
\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)
\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)
Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)
\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)
\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)
\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)
Cho a,b,c > 0.CMR:
\(\frac{ab}{a^2+3b^2+4ab+5bc+3ac}+\frac{bc}{2a^2+b^2+3c^2+3ab+4bc+5ac}+\frac{ac}{3a^2+2b^2+c^2+5ab+3bc+4ac}\le\frac{1}{6}\)
Cho A=\(\frac{4bc-a^2}{bc+2a^2}\),B=\(\frac{4ca-b^2}{ac+2b^2}\),C=\(\frac{4ab-c^2}{ab+2c^2}\).CMR nếu a+b+c=0 thì A.B.C=1
Cho các số thực a,b,c thỏa mãn điều kiện \(a\ge1,b\ge1,c\ge1\)
Chứng minh rằng : \(\dfrac{1}{2a-1}+\dfrac{1}{2b-1}+\dfrac{1}{2c-1}+\dfrac{4ab}{ab+1}+\dfrac{4bc}{bc+1}+\dfrac{4ac}{ac+1}\ge9\)
* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)
Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)
Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)
Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)
Đẳng thức xảy ra khi a = b = c = 1
Cho a,b,c > 0 và ab+bc+ca = 3. CMR:
\(\frac{a}{2b^3+1}+\frac{b}{2c^3+1}+\frac{c}{2a^3+1}\ge1\)
Cho a,b,c > 0 và ab +bc + ca = 3 . CMR \(\frac{a}{2b^3+1}+\frac{b}{2c^3+1}+\frac{c}{2a^3+1}\ge1\)