A = 1/4+1/16+1/36+1/64+1/100+1/44+1/196+1/256+1/324
Chứng minh A<1/2
(làm chi tiết giùm mình nha❤)
Chứng minh rằng A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1324 < 1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
cho dung na
nha bai tren sai day yhemh moi dung ne
Chứng minh rằng: A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
chứng minh biểu thức sau ko phải số tự nhiên
1/4+1/16+1/36+1/64+1/100+1/44+1/196+1/256
giúp mình nhanh nha
1/4+1/16=1\20
1\20+1/36=1/56
1/56+1/64=1\120
1/120+1/100=1/220
1/220+1/44=1/264
1/264+1/196=1/460
1/460+1/256=1/716
suy ra:1/716 ko phải số TN
Ta có : \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{256}>0\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+\frac{1}{256}\)
\(A< \frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}\)\(+\frac{1}{81}+\frac{1}{100}+\frac{1}{121}+\frac{1}{144}+\frac{1}{169}+\frac{1}{196}+\frac{1}{225}+\frac{1}{256}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{15\cdot16}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{15}-\frac{1}{16}\)
\(A< 1-\frac{1}{16}< 1\)
\(\Rightarrow0< A< 1\)
=> A ko là số tự nhiên
Cho
A= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324+1/400. Chứng minh A < 1/20
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{324}+\frac{1}{400}\)
\(A=\frac{1}{4}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\right)\)
\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{19}{40}< \frac{20}{40}=\frac{1}{2}\)
đề là < 1/2 nhé
chứng minh: 1/4 + 1/16 + 1/36 +1/64 + 1/100 + 1/44 + 1/196 <1/2
chứng minh rằng a 1/4 +1/16+1/36+1/64+1/100+1/144 +1/196+......+1/10000 <1/2
chứng minh a=(1/4)+(1/16)+(1/36)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2
Cho A=1/4+1/16+1/36+1/64+1/100+1/144+1/196. Chứng minh rằng A < 1/2
dpcm là điều phải chứng minh nha
Ta có : \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{1}{16}< \frac{1}{4}-\frac{4}{8}\)
\(\frac{1}{36}< \frac{1}{8}-\frac{1}{12}\)
\(\frac{1}{64}< \frac{1}{12}-\frac{1}{16}\)
\(\frac{1}{100}< \frac{1}{16}-\frac{1}{20}\)
\(\frac{1}{144}< \frac{1}{20}-\frac{1}{24}\)
\(\frac{1}{196}< \frac{1}{24}-\frac{1}{28}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy A<1/12
Chứng minh rằng:A=(1/4)+(1/16)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
A<1/1*2+1/3*4+........+1/17*18
A<1-1/2+1/3-1/4+.......+1/17-1/18
A<(1+1/3+.....+1/17)-(1/2+1/4+......+1/18)
A<(1+1/2+1/3+......+1/18)-(1/2+1/4+.....+1/18)-(1/2+1/4+.......+1/18)
A<1-1/18-(1/2+1/3+1/4+......+1/17)
A<17/18-1/2-(1/3+1/4+......+1/17)
A<4/9-(1/3+1/4+.......+1/17)<1/2=4/8
Vậy a<1/2(đpcm)--------------------------Mình làm hơi dài nhé----------------------------------