Chứng minh rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}< \frac{1}{100}\)
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)
Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)
Mặt khác ta thấy:
\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)
\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)
\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)
Rút gọn phép tính \(C.N\)
\(C.N=\frac{1}{10001}\)
\(C.C< N\Rightarrow C.C< C.N\)
Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)
\(\Rightarrow C< \frac{1}{10000}\)(đpcm)
Chứng tỏ rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}........\frac{9999}{10000}\)
Chứng minh rằng \(C<\frac{1}{100}\)
chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}<\frac{1}{100}\)
Đặt :
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)
Đặt :
B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{9998}{9999}.\frac{10000}{10000}\)
Ta thấy " A<B
\(\Rightarrow A.A< A.B=\frac{1}{100^2}\\ \Rightarrow A^2< \frac{1}{100^2}\\ \Rightarrow A< \frac{1}{100}\)
Đặt \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)\(\left(A>0\right)\)
.Và \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\)\(\left(B>0\right)\)
Mặt khác :
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
... ... ...
\(\frac{9999}{10000}< \frac{10000}{10001}\)
Nhân tất cả vế theo vế \(\Rightarrow A< B\Rightarrow A^2< A.B\left(2\right)\)
(1),(2) \(\Rightarrow A^2< \frac{1}{10001}\Rightarrow A< \sqrt{\left(\frac{1}{10001}\right)}< \sqrt{\left(\frac{1}{10000}\right)}=\frac{1}{100}\left(ĐPCM\right)\)
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
Chứng tỏ rằng:C=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Bài 1 : Chứng minh
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b) \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}< \frac{1}{100}\)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
1)Chứng minh các phân số sau là các phân số tối giản:
a)\(A=\frac{12n+1}{30n+2}\)
b)\(B=\frac{14n+17}{21n+25}\)
2)Chứng minh rằng:
a)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b)\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c)\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
c=\(\frac{1}{2}\).\(\frac{3}{4}\).\(\frac{5}{6}\).......\(\frac{9999}{10000}\)
Chứng minh C < \(\frac{1}{100}\)
chứng minh rằng \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{9999}{1000}< \frac{1}{100}\)