Tìm n để A=\(\frac{2n+1}{3n+9}\): a, Nhỏ nhất. b, Lớn nhất. c, Rút gọn được.
Ai đúng cho 3 tick.
Tìm n để A=\(\dfrac{2n+1}{3n+9}\): a, Nhỏ nhất. b, Lớn nhất. c, Rút gọn được.
Ai đúng cho 3 tick.
Cho A=3n+6/n+1
a) Tìm n để a nguyên
b) Tìm n để A lớn nhất, nhỏ nhất
c) Tìm n để A rút gọn được!
\(a)\) Ta có :
\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)
Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy \(n\in\left\{-4;-2;0;2\right\}\)
\(b)\)
* Tính GTLN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi )
Để đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN
\(\Rightarrow\)\(n+1=1\)
\(\Rightarrow\)\(n=0\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)
Vậy \(A_{max}=6\) khi \(n=0\)
* Tính GTNN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a )
Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN
\(\Rightarrow\)\(n+1=-1\)
\(\Rightarrow\)\(n=-2\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)
Vậy \(A_{min}=0\) khi \(n=-2\)
Chúc bạn học tốt ~
a) Ta có :
A = n + 1 3n + 6
= n + 1/ 3n + 3 + 3
= n + 1 /3n + 3 + n + 1 /3
= n + 1 /3 n + 1 + n + 1 /3
= 3 + n + 1 /3
Để A nguyên thì n + 1/ 3 phải nguyên ⇒3⋮ n + 1 ⇒ n + 1 ∈ Ư 3 Mà Ư 3 = 1; − 1;3; − 3 Suy ra : n + 1 /1 −1/ 3 −3 n 0 −2 2 −4
Vậy n ∈ {−4; − 2;0;2}
Tìm n thuộc N để phân số:
A = (4n+5)/(3n+2)
a, tối giản
b, rút gọn được
c, đạt giá trị lớn nhất, nhỏ nhất
Cho A = \(\frac{6n-2}{3n+1}\); B = \(\frac{2n+1}{3n-1}\)
a ) Tìm n thuộc Z để A thuộc Z ; B thuộc Z
b) Tìm n thuộc Z để A;B lớn nhất ; A;B nhỏ nhất
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Bài 1 : Tìm số nguyên n để cho \(\frac{2n-1}{3n+2}\) rút gọn được
Bài 2 : Cho A = \(\frac{10n}{5n-3}\) ( n \(\in\) Z )
a) Tìm n để A có giá trị nguyên
b) Tìm giá trị lớn nhất của A
Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Cho biểu thức B = 2n+3/n-1
a) Tìm n để B là phân số
b) Tìm n để B thuộc Z
c) Tìm n để B là phân số tối giản
d) Tìm n để có giái trị lớn nhất
e) Tìm n để có giá trị nhỏ nhất
m) Tìm n để rút gọn được
Cho A = \(\frac{3n+7}{n+1}\)
a) Tìm n để A là phân số
b) Tìm n để A có giá trị là số nguyên
c) Tìm n để A rút gọn được
d) Tìm n để A là phân số tối giản
e) Tìm n để A có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
S=$\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$
2n+1
n−3 +
3n−5
n−3 −
4n−5
n−3
a, tìm n để A là phân số tối giản
b, tìm n để S có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Câu hỏi tương tự Đọc thêm
tìm n thuộc N để A= \(\frac{n+3}{3n+7}\)
a, có thể rút gọn được
b, phân số tối giản
c, là số nguyên
d, có giá trị lớn nhất. Tìm giá trj lớn nhất đó