Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần gia bảo
Xem chi tiết
Mudtud
13 tháng 5 2019 lúc 21:53
😴😴😴😴😴😴😴
Incursion_03
13 tháng 5 2019 lúc 23:16

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

Nơi gió về
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
khánhchitt3003
16 tháng 9 2017 lúc 22:04

đặt x+y=a

xy=b

ntc a-2

Trần Nguyễn Khánh Linh
16 tháng 9 2017 lúc 22:06

chụp cho tớ 20 bài bđt đi chi

Dương Thiên Tuệ
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
12 tháng 8 2020 lúc 22:52

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

Khách vãng lai đã xóa
Postgass D Ace
Xem chi tiết

\(PT\Leftrightarrow x^3+2x^2+3x+2=y^3\)

Với  x thuộc đoạn {-1,1} ta có

\(x^3< x^3+2x^2+3x+2< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(vô lí)

\(\Rightarrow x\in[-1;1]\)

\(\Rightarrow x\in\left\{-1,0,1\right\}\)

Với x=-1=> y=0(tm)

Với x=0=>\(y=\sqrt[3]{2}\left(ktm\right)\)

Với x=1=>y=2(tm)

Vậy...........

Khách vãng lai đã xóa
Kem Su
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
nguyễn thị lan hương
17 tháng 11 2018 lúc 21:10

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Nguyễn Ngọc Mai Anh
17 tháng 11 2018 lúc 21:31

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

nguyễn thị lan hương
17 tháng 11 2018 lúc 21:53

bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)dễ hơn

Kem Su
Xem chi tiết
Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 5:20

Đặt x=y=-2, pt trở thành: 

\(\left(x+2\right)^2z+\left(z+2\right)^2x+26=0\Leftrightarrow\left(x+z+8\right)\left(xz+4\right)=6\)\(\Rightarrow x+z+8\in U\left(6\right)\)

Giải các TH ta thu được cặp số (x;y) thoả mãn đk là:

(x;y)=(1;-1), (3,-3), (-10;3), (1;-8)

Khách vãng lai đã xóa