Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Le
Xem chi tiết

Giải:

a)Ta có:

C=1957/2007=1957+50-50/2007

                      =2007-50/2007

                      =2007/2007-50/2007

                      =1-50/2007

D=1935/1985=1935+50-50/1985

                      =1985-50/1985

                      =1985/1985-50/1985

                      =1-50/1985

Vì 50/2007<50/1985 nên -50/2007>-50/1985

⇒C>D

b)Ta có:

A=20162016+2/20162016-1

A=20162016-1+3/20162016-1

A=20162016-1/20162016-1+3/20162016-1

A=1+3/20162016-1

Tương tự: B=20162016/20162016-3

                 B=1+3/20162016-3

Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3

⇒A<B

Chúc bạn học tốt!

 

 

Làm tiếp:

c)Ta có:

M=102018+1/102019+1

10M=10.(102018+1)/202019+1

10M=102019+10/102019+1

10M=102019+1+9/102019+1

10M=102019+1/102019+1 + 9/102019+1

10M=1+9/102019+1

Tương tự:

N=102019+1/102020+1

10N=1+9/102020+1

Vì 9/102019+1>9/102020+1 nên 10M>10N

⇒M>N

Chúc bạn học tốt!

Minh Le
25 tháng 4 2021 lúc 14:52

con cặc

 

Hà Anh
Xem chi tiết
Nguyễn Thượng Minh Khai
Xem chi tiết
Arima Kousei
8 tháng 5 2018 lúc 16:50

Ta có : 

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Do  \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

Chúc bạn học tốt !!! 

tùng phạm
Xem chi tiết
tùng phạm
25 tháng 4 2017 lúc 21:27

\(A=\frac{2016^{2016}+2}{2016^{2016}-1};;B=\frac{2016^{2016}}{2016^{2016}-3}\)\(A=\frac{\left(2016^{2016}-1\right)+2+1}{2016^{2016}-1};;B=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}\)\(A=1+\frac{3}{2016^{2016}-1};;B=1+\frac{3}{2016^{2016}-3}\);;Vì \(2016^{2016}-1>2016^{2016}-3\)Nên\(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)Vậy \(A< B\)

công chúa ba ngốc
Xem chi tiết
Nguyễn Tiến Dũng
22 tháng 5 2017 lúc 9:54

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow\)\(A< B\)

Thanh Tùng DZ
22 tháng 5 2017 lúc 9:57

Ta thấy \(2016^{2016}>2016^{2016}-3\)

\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\)

\(\Rightarrow A< B\)

Đào Thị Xuân Mỹ(Bé
Xem chi tiết
trannhatminhnhu
Xem chi tiết
Shino
Xem chi tiết
Lương Đình Khánh
1 tháng 5 2018 lúc 16:02

\(A=\frac{2016^{2016}-1+3}{2016^{2016}-1};B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)

\(A=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1};B=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}\)

\(A=1+\frac{3}{2016^{2016}-1};B=1+\frac{3}{2016^{2016}-3}\)

Vì \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

Arima Kousei
1 tháng 5 2018 lúc 15:47

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Do  \(\frac{3}{2016^{2016}-1}>\frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}>1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A>B\)

Vậy \(A>B\)

Chúc bạn học tốt !!! 

Lương Đình Khánh
2 tháng 5 2018 lúc 12:30

Bạn Hỏa Long natsu ơi mình nghĩ khái niệm về phân số của bạn sai rồi . Đểm mình ví dụ nha \(\frac{3}{5-1}với\frac{3}{5-3}\)số nào lớn hơn thì bạn cũng biết rùi nhỉ . PICK cho mình nha 

Phan Nguyễn Hà Linh
Xem chi tiết
Phạm Huyền My
24 tháng 4 2016 lúc 14:26

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Vì \(1=1;\frac{3}{2016^{2016}-1}<\frac{3}{2016^{2016}-3}\)nên \(1+\frac{3}{2016^{2016}-1}<1+\frac{3}{2016^{2016}-3}\)

\(=>\)\(A\)\(<\)\(B\)