1/2 + 1/3 + 1/6 + 1/10 +1/15 + ... + 1/36 + 1/45
1/2+1/3+1/6+1/10+1/15+...+1/36+1/45
\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{36}\) + \(\dfrac{1}{45}\)
= \(\dfrac{2}{4}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + \(\dfrac{2}{30}\) + ... + \(\dfrac{2}{72}\) + \(\dfrac{2}{90}\)
= \(\dfrac{2}{2.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + \(\dfrac{2}{5.6}\) + ... + \(\dfrac{2}{8.9}\) + \(\dfrac{2}{9.10}\)
= 2 (\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))
= 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\)) = 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\)) = 2 . \(\dfrac{2}{5}\) = \(\dfrac{4}{5}\)1/2+1/3+1/6+1/10+1/15+...+1/36+1/45
Tính
1/2+1/3+1/4+1/6+1/10+1/15+...+1/36+1/45
bn ơi bài này ko có 1/4 đâu:
đặt A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{36}+\)\(\frac{1}{45}\)
\(\frac{1}{2}A\)=> \(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}\)+ \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A\)= \(\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{5}{20}+\frac{10}{20}-\frac{2}{20}=\frac{13}{20}\)
=> A = \(\frac{13}{20}:\frac{1}{2}=\frac{13}{10}\)
Chúc bn học tốt !
A=1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
1/2+1/3+1/6+1/10+1/15+...+1/36+1/45
Thách ai trả lời được ...............................
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
1+1/3+1/6+1/10+1/15+1/21+1/28+1/38+1/45=9/5