Cho \(\frac{a}{b}=\frac{c}{d}.CMR\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
B5:
a,c,b,d>0
CMR: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}>=2\)
B6;
a,b,c>0
CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}>=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Bài 1:
Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)
Khi a=b=c
1. Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\)
2. Cho \(\frac{a}{b}=\frac{c}{d}\). CMR:
a. \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
b. \(\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)
1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)
Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)
\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)
1) Cho a,b,c,d>0. cmr:
a)\(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>=\frac{a+b+c}{\sqrt[3]{abc}}\)
b)\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{e^2}>=\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
Cho a,b,c,d>0, ab+bc+cd+da=3. CMR \(\frac{a}{b^2+c^2+d^2}+\frac{b}{c^2+d^2+a^2}+\frac{c}{d^2+a^2+b^2}+\frac{d}{a^2+b^2+c^2}>\frac{4}{a+b+c+d}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,
Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana
Help me!
Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức
Theo bất đẳng thức Svacxo :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Vậy ta có điều phải chứng minh
Cho : \(\frac{a}{b}=\frac{c}{d}CMR:\)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}v\text{à}\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
1.Cho TLT \(\frac{a}{b}=\frac{c}{d}.CMR:\left(\frac{a+b}{c+d}\right)=\frac{a^2+b^2}{c^2+d^2}\)
1. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
2. Cho a, b , c >0 .CMR: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ba}{c}\ge a+b+c\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)