a) so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)với a,b thuộc Z;a<b và b>0
b) CMR \(-\frac{1}{2}\). \(-\frac{3}{4}\). \(-\frac{5}{6}....-\frac{399}{400}< \frac{1}{20}\)
so sánh 2 phân số sau:
\(\frac{a-1}{a}\) và \(\frac{b+1}{b}\) với a, b thuộc Z
Cố lên nào các bạn!!!
Ta có:
\(\hept{\begin{cases}\frac{a-1}{a}=\frac{a}{a}-\frac{1}{a}=1-\frac{1}{a}\\\frac{b+1}{b}=\frac{b}{b}+\frac{1}{b}=1+\frac{1}{b}\end{cases}}\)
Ta có:
\(\hept{\begin{cases}-\frac{1}{a}\le1\\\frac{1}{b}\ge1\end{cases}}\)
\(\Rightarrow\)\(-\frac{1}{a}\le1\le\frac{1}{b}\)
\(\Rightarrow\)\(1-\frac{1}{a}\le2\le1+\frac{1}{b}\)
\(\Rightarrow\)\(\frac{a-1}{a}\le\frac{b+1}{b}\)
So sánh 2 phân số sau:
\(\frac{a-1}{a}\) với \(\frac{b+1}{b}\) với a, b thuộc Z
Cố lên nào các bạn !!!
\(\frac{a-1}{a}=\frac{\left(a-1\right)b}{ab}=\frac{ab-b}{ab}\)
\(\frac{b+1}{b}=\frac{\left(b+1\right)a}{ab}=\frac{ab+a}{ab}\)
Nếu a=b thì \(\frac{ab+a}{ab}>\frac{ab-b}{ab}\)
Nếu a>b thì \(\frac{ab+a}{ab}>\frac{ab-b}{ab}\)
Cho a thuộc Z, b thuộc Z , b > 0 , n thuộc N*. Hãy so sánh hai số hữu tỉ \(\frac{a}{b}và\frac{a+n}{b+n}\)
(+) Th1 : a = b
=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
(+) th2 : a < b
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}
Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n)
<=> a.b+a.n<b.a+b.n
<=> a.n<b.n
<=> a<b =>a/b<a+n/b+n <=> a<b
Tương tự: a/b>a+n/b+n <=> a>b
a) Cho a,b,n thuộc N* . So sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho các số hữu tỉ : x=\(\frac{a}{b}\) ; y=\(\frac{c}{d}\); z= \(\frac{m}{n}\)(b,d,n >0) . Biết ad - bc = 1 và cn - dm = 1.
* So sánh các số x; y; z
* So sánh y với t, biết t=\(\frac{a+m}{b+n}\) ( với b + n khác 0)
so sánh 2 số hữu tỉ :
\(\frac{a}{b}và\frac{a+2016}{b+2016}\)
với a,b thuộc tập hơp Z, b>0
Ta có: \(\frac{a}{b+2016}< \frac{a}{b}\) và \(\frac{2016}{b+2016}< \frac{a}{b}\)
=> \(\frac{a}{b+2016}+\frac{2016}{b+2016}< \frac{a}{b}\)
hay \(\frac{a+2016}{b+2016}< \frac{a}{b}\)
n
nếu a>b hay a/b > 1 ta có 2016a > 2016b
=> 2016a + ab > 2016b + ab
=> a ( 2016 + b) > b ( 2016 + a )
=> a/b > a+2016/b+2016
tương tự với 2 trường hợp
nếu a < b thì a/b < a+2016/b+2016
nếu a = b thì a/b = a+2016/b+2016
1/cho phân số B= \(\frac{6n-1}{3n+2}\)(n thuộc Z)
a)tìm n thuộc Z để A có giá trị nguyên
b)tìm n thuộc Z để B có giá trị lớn nhất
2/so sánh A và B biết
A=\(\frac{10^{11}-1}{10^{12}-1}\)và B =\(\frac{10^{10}+1}{10^{11}+1}\)
p/s: ghi luôn cách giải và đáp số
mik cần câu trả lời gấp
So sánh \(\frac{a}{b}\)và \(\frac{a+2019}{b+2019}\)với a,b thuộc Z, b>0
MK làm rồi mà k bt đúng hay sai. Giúp mk với
Vì b > 0 => b + 2019 > 0
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a+2019}{b+2019}=\)
\(\frac{b.\left(a+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
TH1: Nếu a < b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}< \frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}< \frac{a+2019}{b+2019}\)
TH2: Nếu a = b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
TH3: Nếu a > b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}>\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
Xét tích : \(a(b+2019)=ab+2019a\)
\(b(a+2019)=ab+2019b\)
Vì b > 0 nên b + 2019 > 0
Nếu a > b thì \(ab+2019a>ab+2019b\)
\(a(b+2019)>b(a+2019)\)
\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}\)
Nếu a < b thì \(ab+2019a< ab+2019b\)
\(a(b+2019)< b(a+2019)\)
\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}\)
Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
So sánh số hữu tỉ \(\frac{a}{b}\)( a,b thuộc Z, b khác 0 ) với số 0 khi a,bcùng dấu và khi a,b khác dấu
Khi a và b cùng dấu thì \(\frac{a}{b}\)lớn hơn 0 . Khi a và b khác dấu thì \(\frac{a}{b}\)bé hơn 0
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
So sánh số hữu tỉ \(\frac{a}{b}\)(a, b thuộc Z; b khác 0) với số 0 khi a, b cùng và khi a, b khác dấu
Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
Khi a, b khác dấu thì \(\frac{a}{b}< 0\)