Cho a là số tự nhiên lẻ,b là số tự nhiên.Chứng tỏ rằng các số a và (ab+4) nguyên tố cùng nhau
Cho a là số tự nhiên lẻ,b là một số tự nhiên.Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Gọi k là Ước số của a và ab + 4
Do a lẻ \(\Rightarrow\)k lẻ
Ta biểu diễn:
( ab + 4 = kp (1)
a = kp (2)
Thay (2) vào (1)
\(\Rightarrow\)kqb + 4 = kp
\(\Rightarrow\)k ( p - qb ) = 4
\(\Rightarrow\)p - qb = 4/k
Do p - qb nguyên \(\Rightarrow\)k là Ước kẻ của 4 \(\Rightarrow\)k = 1
Vậy a và ab + 4 nguyên tố cùng nhau.
cho a la số tự nhiên lẻ,b là một số tự nhiên.chứng minh rằng các số a và ab+4 nguyên tố cùng nhau.
Cho a là 1 số tự nhiên lẻ,b là 1 số tự nhiên bất kì.Chứng tỏ rằng các số a và ab+4 là các số nguyên tố cùng nhau
Cho a là số tự nhiên lẻ, b là một số tự nhiên.Chứng minh rằng các số a và ab+4 nguyên tố cừng nhau
Giúp mình đi nha!!!!!!
cho mình hỏi là: a.b hay là ab
cho a là một số tự nhiên lẻ, b là một số tự nhiên bất kì. Chứng tỏ rằng các số a và ab + 4 là các số nguyên tố cùng nhau
Gọi d là ƯC của a và ab+4
=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}
nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)
Tương tự d cũng ko thể bằng 4
Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)
cho a là số tự nhiên lẻ,b là một số tự nhiên.Chứng minh ràng các số a và ab+4 nguyên tố cùng nhau
giải ra cho mình nhé ai nhanh nhất sẽ có LIKE!
Giả sử a và ab+4 cùng chia hết cho 1 số tự nhiên d (d khác 0)
Như vậy thì ab chia hết cho d ,do đó hiệu (ab+4)-ab=4 cũng chia cho d
suy ra d có thể =1;2;4,nhưng a không chia hết cho 2 và 4 vì là số lẻ,vậy d có thể =1 nên các số a và ab+4 là nguyên tố cùng nhau
***** nha !!
Cho a là số tự nhiên lẻ ,b là một số tự nhiên . Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau
Giả sử a và ab + 4 cùng chia hết cho số tự nhiên d ( d khác 0 )
Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d
=> d = { 1 ; 2 ; 4 }
Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta có:
ab+4=kp (1)
a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Cho a là số tự nhiên lẻ ,b là một số tự nhiên .Chứng minh rằng các số a và ab+4 nguyên tố cùng nhau