Tìm chữ số a để thỏa mẵn 2 điệu kiện sau:
a)\(a^{\overline{aa}}=4194304\)
b)\(a\times a=a+a\)
Thay các chữ cái bằng các chữ số thích hợp:
A) \(\overline{3a,b}\times\overline{0,b}=\overline{16,ab}\)
B)\(\overline{a,bc}\times4,1=\overline{15,abc}\)
C)\(\overline{ab,ab}\div\overline{ab}=\overline{ab,a}\)
D)\(\overline{aa,aa}\div\overline{ab,a}=\overline{a,a}\)
Mọi người trả lời, giải thích lời giải dùm em với ạ!!!
Bài 1: Thay các chữ a, b, c, d bằng các số thích hợp:
\(\overline{ab}\times\overline{cd}=\overline{bbb}\)
Bài 2: Điền các chữ số vào dấu hỏi và vào các chữ sau:
a) \(\overline{abcd}\times\overline{dcba}=\overline{?????000}\)
b) \(????+????=?9997\)
Bài 3: Tìm số tự nhiên biết tổng của nó và các chữ số của nó bằng 1987.
Bài 4: Cho a là số có bốn chữ số, tổng các chữ số của a là b. Tổng các chữ số của b là c. Biết a + b + c = 1989. Tìm a.
Bài 5: Tìm số tự nhiên nhỏ nhất chia hết cho 1987 mà 5 chữ số đầu tiên bên trái của số tự nhiên đó đều là 1.
Bài 6: Tìm các chữ số a, b, c để: \(\overline{abbc}=\overline{ab}\overline{ }\times\overline{ac}\times7\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
câu 1:tìm x:
|x2+|x-1||
câu 2:cho a,b,c là 3 số thực khác 0,thỏa mẵn điều kiện (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính B=(1+b/a)(1+a/c)(1+c/b)
1, không hiêu dề
2,
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Leftrightarrow a=b=c\)
Thay vào B dễ tính được B=2.2.2=8
Tìm chữ số thích hợp ở dấu * để số \(\overline{212\text{*}}\) thỏa mãn mỗi điều kiện sau:
a) Chia hết cho 2;
b) Chia hết cho 5;
c) Chia hết cho cả 2 và 5.
a) Chia hết cho 2 => * = {0; 2; 4; 6; 8}
b) Chia hết cho 5 => * = {0; 5}
c) Chia hết cho cả 2 và 5 => * = 0
a) * ∈ { 0,2,4,6,8}
b) * ∈ {0,5}
c) * = 0
a) Chia hết cho 2 = {0; 2; 4; 6; 8}
b) Chia hết cho 5 = {0; 5}
c) Chia hết cho cả 2 và 5 = 0
Tìm các chữ số a; b; c khác 0 thỏa mãn: \(\overline{abbc}=\overline{ab}\times\overline{ac}\times7\)
Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)
\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)
\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)
Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy \(a=1,b=9,c=5\)
Bấm vào câu hỏi tương tự đi bạn .
Anh Lê Mạnh Tiến Đạt giải rồi đấy
Có abbc < 10.000 ⇒ ab.ac.7 < 10000 ⇒ ab.ac < 1429 ⇒ a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) ⇒ a0 < 38 ⇒ a ⇐ 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc ⇒ loại
+)Với a = 2 ta có :
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc ⇒ loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) ⇒ a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) ⇒ 1c.7 < 110⇒ 1c < 16 ⇒ c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 ⇒ 1bb5 = 1b.105 ⇔ 100.1b + b5 = 1b.105b ⇔ b5 = 5.1b ⇔ 10b + 5 = 5.(10+b) ⇒ b = 9 ⇒a = 1;b = 9;c = 5
Tìm các chữ số a và b thỏa mãn điều kiện:
aaa-aa-a=bb
tìm các chữ số x,y,a,b biết\(\overline{x,y}\) . \(\overline{x,y}\) = \(\overline{aa,bb}\)
Tìm số thập phân \(\overline{a,b}\) biết \(\overline{a,b} \times 9,9 = \overline{aa,bb}\)
Nhanh mình cho 1 \(Tick\) cho bạn nào nhanh nhất.Mình hứa.
ta có: a,b x 9,9 = aa,bb
=> 100 x ( a,b x 9,9 ) = 100 x aa,bb
10 x a,b x 10 x 9,9 = aabb
ab x 99 = aabb
=> ( a x 10 + b ) x 99 = a x 11 x 100 + b x 11
a x 990 + b x 99 = a x 1100 + b x 11
=> b x 88 = a x 110
=> b x 88 : 22 = a x 110 : 22
b x 4 = a x 5
=> a = 4; b = 5
=> a,b = 4,5
Điền chữ số vào dấu * để được số 54* thỏa mãn điều kiện :
a) chia hết cho 2 ;
B) chia hét cho 5
a ) số cần điền là 0,2,4,6,8 . Các số đó là : 540,542,544,546,548.
b ) các số cần điền là 0,5 . Các số đó là : 540,545
a) Để 54* chia hết cho 2 => 54* là số chẵn => * \(\in\){0;2;4;6;8}
b) Để 54* chia hết cho 5 => 54* có số tân cùng là 5 hoặc 0 => * \(\in\){0;5}
Dấu * đó là số 0 vì :
540 : 2 = 270 và 540 : 5 = 108
Quy tắc : các số chia hết cho 5 và 2 đều có chữ số tận cùng là chữ số 0