chứng minh rằng 1/3+2/3^2+3/3^3+4/3^4+....+2009/3^2009<3/4
Chứng minh rằng:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2009^2}+\frac{1}{2010^2}\)>1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2009^2}+\frac{1}{2010^2}>1\)
=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}+\frac{1}{2010^2}>\frac{ }{ }\)\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)
=\(\frac{1}{1}-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}\)=\(\frac{2010}{2010}>\frac{1}{2010}=1>\frac{1}{2010}\)
Vậy \(1>\frac{1}{2010}\)
Bạn ơi sai đề nhé
Bài 1:Chứng minh
3^1 + 3^2 + 3^3 + 3^4 +...+ 3^2009 + 3^2010) chia hết cho 13
goi tong la A
A co so so hang la
(2010-1):1+1= 2010(so)
chia A thanh 670 nhom
A = (3^1+3^2+3^3)+....+(3^2008+3^2009+3^2010)
A = 3(1+3+3^2)+....+3^2008(1+3+3^2)
A = 3.13+.....+3^2008.13
A = 13.(3+...+3^2008)
Vi 13 chia het cho 13 => (3+...+3^2008)chia het cho 13
=> A chia het cho 13
31+32+..........+32009+32010
=(3+32+33)+.........+(32008+32009+32010)
=(3+3.3+3.32)+.............+(32008+32008.3+32008.32)
=3(1+3+32)+..........+32008.(1+3+32)
=3.13+.........+32008.13
=(3+33+............+32008).3 chia hết cho 3
ta có:3^1+3^2+3^3+....+3^2010=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2008+3^2009+3^2010)=3^1(1+3+9)+3^4(1+3+9)+.....+3^2008(1+3+9)=3.13+3^4.13+...+3^2008.13=13.(3+3^4+...+3^2008)nên chia hết cho 13.vì vậy tổng trên chia hết cho 13
Câu hỏi : Chứng minh : 1/3 + 2/3^2 + 3/3^3 + 4/3^4 +...+ 2009/3^2009 < 3/4
\(P=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}+\frac{2009}{3^{2009}}\)
\(\Rightarrow3P=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2009}{3^{2008}}\)
\(\Rightarrow2P=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}-\frac{2009}{3^{2009}}=A-\frac{2009}{3^{2009}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2007}}\)
\(\Rightarrow2A=3-\frac{1}{3^{2008}}< 3\Rightarrow A< \frac{3}{2}\)
\(\Rightarrow2P=A-\frac{2009}{2^{2009}}< A< \frac{3}{2}\Rightarrow P< \frac{3}{4}\)
Chứng minh: A = (2009 + 20092 + 20093 + 20094 + .... + 200910) ⋮ 2010
Giúp mình nha, mình đang cần gấp!
\(A=2009+2009^2+2009^3+...+2009^{10}\) (có 10 số hạng)
\(A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+...+\left(2009^9+2009^{10}\right)\) (có 5 nhóm)
\(A=2009\left(1+2009\right)+2009^3\left(1+2009\right)+...+2009^9\left(1+2009\right)\)
\(A=2009.2010+2009^3.2010+...+2009^9.2010\)
\(A=2010\left(2009+2009^3+...+2009^9\right)\)
Ta thấy: \(2010\left(2009+2009^3+...+2009^9\right)⋮2010\) (Vì \(2010⋮2010\) )
\(\Rightarrow A⋮2010\) (đpcm)
Vậy \(A⋮2010\)
A = (2009 + 20092 + 20093 + 20094 + .... + 200910)
A = [(2009 + 20092) + (20093 + 20094) + ... + (20099 + 200910)]
A = [4038090 + 20092(2009 + 20092) + ... + 20098(2009 + 20092)]
A = [4038090 + 20092.4038090 ... + 20098. 4038090] ⋮ 2010
(4038090 ⋮ 2010)
Bây giờ nhìn lại mới thấy dễ.
Mình biết làm rồi nha.
Không cần ai làm nữa đâu.
Câu hỏi : Chứng minh : 1/3 + 2/3^2 + 3/3^3 + 4/3^4 +...+ 2009/3^2009 < 3/4
GIÚP IK MN
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
Cho A =\(1-3+3^2-3^3+..........-3^{^{2009}}+3^{2010}\)
Chứng minh 4A -1 là một lũy thừa của 3
\(A=1-3+3^2-3^3+.....-3^{2009}+3^{2010}\)
\(\Rightarrow3A=3-3^2+3^3-......-3^{2010}+3^{2011}\)
\(\Rightarrow3A+A=4A=1+3^{2011}\)
\(\Rightarrow4A-1=1+3^{2011}-1=3^{2011}\)là lũy thừa của 3 ( đpcm )
chứng minh rằng 1/2^3 +1/3^3 +1/4^3+...+ 1/2009^3< 1/4
Chứng minh rằng 2/3^2+3/3^3+4/3^4+..................+2016/3^2016< 5/12