Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân nguyễn
Xem chi tiết
Hà Mi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
29 tháng 5 2017 lúc 10:45

1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)

\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) x y O

Bùi Thị Vân
29 tháng 5 2017 lúc 11:14

b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) J = (-4.34, -5.84) J = (-4.34, -5.84) J = (-4.34, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) x y A B O

Bùi Thị Vân
29 tháng 5 2017 lúc 13:48

c)
1)Tập xác định D = R.
2) Sự biến thiên
\(y'\left(x\right)=6x^2-6x\); \(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=+\infty\); \(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=-\infty\)
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) J = (-4.34, -5.84) J = (-4.34, -5.84) J = (-4.34, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) L = (-4.38, -5.9) L = (-4.38, -5.9) L = (-4.38, -5.9) M = (10.98, -5.9) M = (10.98, -5.9) M = (10.98, -5.9)
Nhận xét:
Hàm số đồng biến trên các khoảng \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\).
Hàm số nghịch biên trên các khoảng: \(\left(0;1\right)\).
Hàm số đạt cực đại tại x = 0 với \(y_{CĐ}=-2\).
Hàm số đạt cực tiểu tại \(x=1\) với \(y_{CT}=-3\).
3) Đồ thị hàm số
Giao Oy: Cho \(x=0\) suy ra \(y=-2\).
Suy ra: \(C\left(0;-2\right)\).
TenAnh1 TenAnh1 A = (-4.32, -5.92) A = (-4.32, -5.92) A = (-4.32, -5.92) B = (11.04, -5.92) B = (11.04, -5.92) B = (11.04, -5.92) C = (-4.38, -5.98) C = (-4.38, -5.98) C = (-4.38, -5.98) D = (10.98, -5.98) D = (10.98, -5.98) D = (10.98, -5.98) E = (-2.14, -7.16) E = (-2.14, -7.16) E = (-2.14, -7.16) F = (13.22, -7.16) F = (13.22, -7.16) F = (13.22, -7.16) G = (-1.78, -6.94) G = (-1.78, -6.94) G = (-1.78, -6.94) H = (13.58, -6.94) H = (13.58, -6.94) H = (13.58, -6.94) I = (-4.3, -5.68) I = (-4.3, -5.68) I = (-4.3, -5.68) J = (11.06, -5.68) J = (11.06, -5.68) J = (11.06, -5.68) O y x

Tài khoản bị khóa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
thu trang
Xem chi tiết
Lê Ngọc Nhả Uyên
Xem chi tiết
Nguyễn Phương Thùy
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 9 2021 lúc 22:00

a.

\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)

b.

\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)

c.

\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)

d.

\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)

e.

\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)

g.

\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)

An Nguyễn
Xem chi tiết