cho tam giác ABC có (góc) B-C=90(độ). Các đường phân giác trong và ngoài của góc A cắt BC lần lượt tại D và E . chứng minh rằng tam giác ADE vuông cân
Cho tam giác ABC có góc B - góc C = 90 các đường phân giác trong và ngoài của góc A cắt BC lần lượt tại D và E. Chứng minh rằng tam giác ADE vuông cân
Cho tam giác ABC có góc B - góc C = 90 độ. Các đường phân giác trong và ngoài của góc A cắt BC ở D, E. Chứng minh rằng: Tam giác ADE vuông cân.
cho tam giác ABC có góc B - góc C = 90 độ. các đường phân giác trong và ngoài của góc A cắt BC tại D và E. cm: tam giác ADE vuông cân
xin lỗi bạn nha mik mới học lớp 5 nên không giải đc đâu bạn ơi
Cho tam giác ABC có các góc B trừ góc C bằng 90°. Các đường phân giác của góc trong và ngoài của góc A cắt BC ở D và E. Chứng minh tam giác ADE vuông cân
Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .
dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dụng góc ngoài tam giác AMB
=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB
vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân
t i c k nhé!!!! 6767897854653164457575675676768797897897845665765
Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .
dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dụng góc ngoài tam giác AMB
=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB
vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân
Chúc bạn học tốt
tam giác abc có góc b-góc c = 90 độ. Các đường phân giác trong và ngoài góc a cắt bc tại d và e . CMR tam giác ade vuông cân.
Cho tam giác ABC có góc B - góc C = \(90^o\). các đường phân giác trong và ngoài của góc A cắt BC ở D và E. Chứng minh tam giác ADE vuông cân
Ta có tg EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau)
Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C . Áo dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC
áp dung góc ngoài tg AMB --> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB vuông cân --> góc MDB = 45 độ
--> tg EAD vuông cân
bạn ơi vẽ hình r mình k 2 lần luôn đc ko
Cho tam giác ABC góc A bằng 120 độ các tia phân giác của góc A và C cắt nhau ở O, cắt các cạnh BC và AB lần lượt ở D và E. Đường phân giác góc ngoài tại đỉnh B của tam giác ABC cắt đường thẳng AC tại F. Chứng minh a,BO vuông góc với BF b, góc BDF bằng góc ADF c, 3 điểm D, E, F thẳng hàng
a) Xét \(\Delta ABC\) có tia phân giác \(BAC,ACB\) cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\) (tính chất 3 đường phân giác của tam giác)
\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )
Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)
( tính chất của tia phân giác )
Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)
b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)
\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\) ( dấu hiệu nhận biết tia phân giác )
\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )
\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )
Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )
c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác góc trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc ngoài góc B của tam giác ABC cắt AC tại F. Chứng minh
a) góc FBO=90 độ
b) DF là tia phân giác của góc D của tam giác ABC
c) D,E,F thằng hàng
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân