B = 1 + 1 phần 22 + 1 phần 33+ 1 phần 42+ .... + 1 phần 252
Chứng Minh Rằng 4 phần 3 < B < 2
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 +...+ 1 phần 22 > 1 phần 2
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 + … + 1 phần 22 > 1 phần 2
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt
(1 phần 11-5 phần 22).33 phần 5+(1 phần 15-2 phần 3):9 phần 5
\(\left(\frac{1}{11}-\frac{5}{22}\right).\frac{33}{5}+\left(\frac{1}{15}-\frac{2}{3}\right)\div\frac{9}{5}\)
\(=\frac{-3}{22}.\frac{33}{5}+\frac{-2}{5}\times\frac{5}{9}\)
\(=\frac{-9}{10}+\frac{-2}{9}\)
\(=\frac{-101}{90}\)
chứng minh rằng 1 phần 4 bé hơn 1 phần 21 cộng 1 phần 22 cộng 1 phần 23 cộng ... cộng 1 phần 50 bé hơn 7 phần 6
Bài 1 : tính tổng
A=1 phần 30 + 1 phần 42 + 1 phần 56 + 1 phần 72 + 1 phần 90 + 1 phần 110 + 1 phần 132
B = ( 1 + 1 phần 2 ) . ( 1 + 1 phần 3 ) + (1 + 1 phần 4 ) ... (1 + 1 phần 99 )
C = 1 phần 4 mũ 2 -1 + 1 phần 6 mũ 2 - 1 + 1 phần 8 mũ 2 - 1 +...+ 1 phần 30 mũ 2 -1
1)
A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
= \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
= \(\frac{1}{5}-\frac{1}{12}\)
= \(\frac{7}{60}\)
B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
= \(\frac{3.4.5.....100}{2.3.4....99}\)
= \(\frac{100}{2}=50\)
C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)
= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)
= \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)
= \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)
= \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
~ Hok tốt ~
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
....
Chứng minh rằng : 100 - (1 + 1 phần 2 + 1 phần 3 + ...+ 1 phần 100 ) = 1 phần 2 + 2 phần 3 + 3 phần 4 + ... + 99 phần 100
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)
b=
1 phần 2 +1 phần 3+1 phần 4 +... +1 phần 64.CHUNG minh b>2
A = 1 phần 31 + 1 phần 32 + 1 phần 33 + .... + 1 phần 60
Chứng minh 3 phần 5 < A < 4 phần 5Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
\(A>\dfrac{1}{40}.10+\dfrac{1}{50}.10+\dfrac{1}{60}.10=\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{3}{5}\)
Vậy \(A>\dfrac{3}{5}\)
Ta có:
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)\(A< \dfrac{1}{31}.10+\dfrac{1}{41}.10+\dfrac{1}{51}.10< \dfrac{4}{5}\)
Vậy \(A< \dfrac{4}{5}\)
Do đó: \(\dfrac{3}{5}< A< \dfrac{4}{5}\)
tính giá trị biểu thức sau
a).-5 phần 2 chia ( 3 phần 4 trừ 1 phần 2 )
b). 298 phần 719 nhân ( 1 phần 4 + 1 phần 12 trừ 1 phần 3 ) 2011 phần 2012
c). 27nhaan 18+ 27 nhân 103 trừ 120 nhân 27 phần 15 nhân 33 + 33 nhân 12
có cả lời giải là mình tick nheeeeeeeeeeeeeeeeeeeeeeee
scsCCCCCCCCCCCC4T54Y5Y5