Bài 1: Cho tam giác ABC (AC > AB) và đường trung tuyến AM. Lấy E tuỳ ý trên AM. CMR: góc EBC > ECB.
Bài 2: Cho 4 điểm A, B, C, D như hình vẽ. Hãy tìm 1 điểm M sao cho MA + MB + MC + MD nhỏ nhất.
Bài 1: Cho tam giác ABC (AC > AB) và đường trung tuyến AM. Lấy E tuỳ ý trên AM. CMR: góc EBC > ECB.
Bài 2: Cho 4 điểm A, B, C, D như hình vẽ. Hãy tìm 1 điểm M sao cho MA + MB + MC + MD nhỏ nhất.
Bài 1 :Cho tam giác ABC vuông cân tại A, D là điểm bất kỳ trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Bx sao cho ABx= 135o. Đường thẳng vuông góc với DC vẽ từ D cắt tia Bx tại E.
CMR: ∆DEC vuông cân.
Bài 2:Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a,CMR: AB = DC và AB // DC.
b,CMR: ABC = CDA từ đó suy ra .
c,Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM.
d,Tìm điều kiện của tam giác ABC để .
e,Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng.
1. Câu hỏi của son tung - Toán lớp 7 - Học toán với OnlineMath
Bài 7. Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a)CMR: AB = DC và AB // DC. b) CMR: ABC = CDA từ đó suy ra 2 BC AM . c)Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM. d) Tìm điều kiện của tam giác ABC để 2 BC AC . e)Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC có AB < AC . Vẽ trung tuyến AM . Trên tia đối tia MA lấy điểm D sao cho MD = MA .
a) chứng minh góc BAM > góc CAM
b ) CMR : AM < AB + AC/2
Bài 1: Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc BAC ( D tEhuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a, Tam giác BDF = tam giác EDC.
b, BF = EC.
Bài 2: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a, Tính số đo góc ABD.
b, Chứng minh : tam giác ABC = tam giác BAD.
CÁC BẠN NHỚ VẼ HÌNH VÀ GIÚP MÌNH VỚI NHA! CẢM ƠN CÁC BẠN NHIỀU.
Cho tam giác ABC có AB nhỏ hơn AC Vẽ đường trung tuyến AM. Trên tia đối của tia ma lấy điểm E sao cho ma = MD chứng minh
a, AB = CD và AB song song C
b, dựng phía ngoài tam giác ABC hai tam giác vuông cân tại A là tam giác BAE và tam giác CAF. Chứng minh AC = BF và AC vuông góc với BF
c, chứng minh AM bằng 1/2 EF
d, kẻ đường cao ah h của tam giác ABC Chứng minh đường thẳng a đi qua trung điểm I của EF
e, chứng minh đường thẳng AM vuông góc với EF
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN
B1:Cho tam giác ABC vuông tại A (AB<AC), đường phân giác BM. Trên tia đối của MB lấy D sao cho MB=MD. Qua D kể đường thẳng vuông góc với AC tại N và cắt BC tại E. Cmr: MN<MC
B2:Cho tam giác ABC cân tại A, AB=5cm, BC=6cm. Trung tuyến BM và CN cắt nhau tại G. E là điểm nằm giữa A và G. Cmr: AB-AM>EB-EM
Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F
a) C/m tứ giác AEMF là hình chữ nhật
b) tinh độ dài BC, AM
c) trên tia đối của tia MA lấy điểm H sao cho MA= MH. C/m ABHC là hình chữ nhật
d) gọi điểm D là điểm đối xứng của M qua F. C/m ADCM là hình vuông
e) tìm thêm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông.