Chứng minh trong dãy:10,102,......,1020,tồn tại một só chia hết cho số 19 dư 1
Cho dãy các số:10;10^2;10^3;......;10^16
Chứng minh rằng tồn tại ít nhất một số chia 19 dư 1
cho dãy số:10;10^2;10^3;10^4;.......;10^20
chứng minh rằng trong đó tồn tại một số chia 19 dư 1
Cho dãy số 10;102;103;...;1019;1020. Chứng minh: tồn tại một số chia 19 dư 1
sai de: tat ca cac so deu ko thể chia cho 9 du 1 dc
chỉ co thể chia cho 9 du 1
ta thấy 10 : 9=1,11(111) du 1
10*2=10x10:9=100:9
mà 100 gấp đôi 10 thì 100:9=(10:9)x10=1,11(111)x10=11,11(111)
cứ thế làm tiếp nhé
9
Giải
Theo nguyên lí Di-rich-let ta suy ra: Tồn tại 2 số trong 20 mươi số khi chia 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19
Giả sử 10n , 10m là hai số có cùng số dư khi chia cho 19 (1≤ n < m ≤ 20)
10m−10n\(⋮\)19
10n\(.\)(10m−n−1)\(⋮\)19 mà 10n không chia hết cho 19 nên suy ra :
10m−n−1\(⋮\)19
10m−n−\(1\)= 19k (k∈N)
10m−n=19k+\(1\)( đpcm )
cho dãy số: 10;10 mũ 2;10 mũ 3;10 mũ 4;........;10 mũ 20
chứng minh rằng tồn tại một số chia 19 dư 1
Chứng minh trong dãy 10,102,104,.....,1020,tòn tại một số chia hết cho 19 dư 1.
Sử dụng Nguyên Lí Di - rich - le vào giải bài toán
Đề vô lí!
Chứng minh trong dãy 10,102,104,.....,1020,tồn tại một số chia hết cho 19 dư 1.
Đã chia hết cho 19 còn dư 1.
Mik thấy đề thừa 1 2 chữ.
Đã chia hết cho 19
Mà lại còn dư 1
Vvvvvvvvvô llllllllí
Cho 7 số tự nhiên a1,a2,a3,a4,a5,a6,a7 .Chứng minh rằng : tồn tại một số chia hết cho 7 hoặc tồn tại tổng một số số liên tiếp trong dãy chia hết cho 7
mình học lớp 4 bạn đố như này bố thằng nào trả lời được
Cho dãy số: 10,102,103,...1020
Chứng minh rằng tồn tại 1 số chia cho 19 dư 1
Dãy số 10,102,103,...1020 có tất cả 20 số. Có 20 số khác nhau mà chỉ có 19 số dư trong phép chia cho 19, do đó tồn tại hai số cùng số dư trong phéo chia cho 19.
Gọi 2 số đó là 10m và 10n. \(\left(1\le n
1.Trong một cuộc họp có 6 người.Người ta nhận thấy cứ 3 người bất kì thì có 2 người quen nhau.Chứng minh rằng 6 người luôn có 3 người đôi một quen nhau.
2.Cho dãy số 10;10^2;10^3....;10^10.CMR trong dãy số trên tồn taij 1 số chia 19 dư 1.
3.Cho 3 số ng tố lớn hơn 3. CMR tồn tại 2 số ng tố có tổng hoặc hiệu chia hết cho 12.
Bài 1:
Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.
Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.
Giả sử BC màu xanh thì A, B, C đôi một quen nhau.
Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.
Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.
Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).
10m – 10n ⋮ 1910n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:10m-n – 1 ⋮ 19
10m-n – 1 = 19k (k ∈ N)10m-n = 19k + 1 (đpcm).Bài 3:
Một số tự nhiên n khi chia cho 12 chỉ có thể có số dư là 0;1;2;3;4;5;6;7;8;9;10;11
Do n là nguyên tố lớn hơn 3 nên khi n chia cho 12 chỉ có thể có số dư là: 1;5;7;11
Mặt khác, cho 5 số nguyên tố theo nguyên lí Direchlet tồn tại 2 số có chung số dư khi chia cho 12.
=> Tồn tại 2 chữ số có hiệu chia hết cho 12.
Chứng minh trong dãy số \(10\),\(10^2\),\(10^3\),.... tồn tại ít nhất 1 số chia 19 dư 1