\(4.\left(1-x\right)+\frac{1}{2}=\frac{5}{6}+x\)
Tìm các số nguyên n và m biết:
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Gíup nhanh nha trước 1 giờ
S=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, tìm n để S nhận giá trị nguyên
2 chứng tỏ
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}< 1\)
3,tìm số nguyên n,m thỏa mãn
\(\frac{m}{9}-\frac{3}{n}=\frac{1}{18}\)
4 tìm x
\(\frac{1}{1.2}+\frac{1}{1.3}+...+\frac{1}{x\left(x+1\right)}=\frac{6}{7}\)
5,tính nhanh
\(\frac{\left(3.4.2^{16}\right)^2.121^2}{11.2^{13}.4^{11}-16^9}\)
CÁC BẠN GIÚP MÌNH VỚI ,MAI MÌNH PHẢI NỘP RỒI
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
2/
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...........
\(\frac{1}{99^2}< \frac{1}{98.99}=\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}=1-\frac{1}{99}< 1\)
=> ĐPCM
3/
\(\frac{m}{9}-\frac{3}{n}=\frac{1}{18}\)
=> \(\frac{3}{n}=\frac{m}{9}-\frac{1}{18}\)
=> \(\frac{3}{n}=\frac{2m}{18}-\frac{1}{18}\)
=> \(\frac{3}{n}=\frac{2m-1}{18}\)
=> n(2m - 1) = 3.18 = 54
=> n và 2m - 1 thuộc Ư(54) = {1;-1;2;-2;3;-3;6;-6;9;-9;18;-18;27;-27;54;-54}
Mà 2m - 1 là số lẻ => 2m - 1 thuộc {1;-1;3;-3;9;-9;27;-27}
n thuộc {2;-2;6;-6;18;-18;54;-54}
Ta có bảng:
2m - 1 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 |
m | 1 | 0 | 2 | -1 | 5 | -4 | 14 | -13 |
n | 54 | -54 | 18 | -18 | 6 | -6 | 2 | -2 |
Vậy các cặp (m;n) là (1;54) ; (0;-54) ; (2;18) ; (-1;-18) ; (5;6) ; (-4;-6) ; (14;2) ; (-13;-2)
1. A= \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn A
b. Tìm x để A<0
c. Tìm giá trị nhỏ nhất A.
2. M=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{x+4}{x+\sqrt{x}+1}\right)\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị nguyên
3. N=\(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{a.b}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{a.b}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
a. Rút gọn N
b. Tính N khi a=\(\frac{2}{2-\sqrt{3}}\)
c. Tìm số nguyên a để N có giá trị nguyên
Gíup mình với. Cảm ơn nhiều ạ.
1) Tính:\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
2) Tìm tất cả các số nguyên tố x,y sao cho x2 - 6y2 - 1 = 0
3) Cho \(n\in N\)biết n-10; n+4. n+60 đều là số nguyên tố. CMR: n+90 là số nguyên tố
4) Tính nhanh
\(A=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right).....\left(\frac{7}{10800}+1\right)\)
Các bn giúp mk nhanh lên nhé
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Bài 1 : Tìm x biết :
\(\frac{x}{3}=-\frac{12}{9}\)
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
\(\frac{1}{5}.\left|x\right|-1\frac{2}{5}=\frac{2}{5}\)
Bài 2 : Tìm tất cả các số nguyên để \(\frac{n+1}{n-2}\) là số nguyên.
Ai nhanh mk tick
1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)
=> \(\frac{3x}{9}=-\frac{12}{9}\)
=> 3x = -12
=> x = -12 : 3
=> x = -4
\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)
=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{11}{10}\)
=> \(x=\frac{11}{10}:\frac{4}{5}\)
=> \(x=\frac{11}{8}\)
bài 1: \(\frac{x}{3}=\frac{-12}{9}\)=> 9x=-36
=> x=-4
vậy x=-4
\(\frac{4}{5}x-\frac{8}{5}=\frac{-1}{2}\)=> \(\frac{4}{5}x=\frac{-1}{2}+\frac{8}{5}\)
=> \(\frac{4}{5}x=\frac{-5}{10}+\frac{16}{10}\)=\(\frac{11}{10}\)=> \(x=\frac{11}{10}:\frac{4}{5}\)=\(\frac{11}{10}.\frac{5}{4}\)=\(\frac{11}{8}\)
vậy x=\(\frac{11}{8}\)
\(\frac{1}{5}.\left|x\right|-1\frac{2}{5}=\frac{2}{5}\)=> \(\frac{1}{5}.\left|x\right|-\frac{7}{5}=\frac{2}{5}\)
=> \(\frac{1}{5}.\left|x\right|=\frac{2}{5}+\frac{7}{5}=\frac{9}{5}\)=> |x| =\(\frac{9}{5}:\frac{1}{5}\)=9
=> x=9 hoặc x=-9
vậy x=9 hoặc x=-9
Bài 1:
1. Tính: \(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
2. Tìm và tính tổng các số nguyên x thỏa mãn: \(\frac{21}{5}\left|x\right|< 2019\)
3. Tìm x, biết: \(\frac{2^{24}\left(x-3\right)}{\left(3\frac{5}{7}-1,4\right)\left(6\cdot2^{24}-4^{13}\right)}=\left(\frac{5}{3}\right)^2\)
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow E=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{1}{2}\left(3+4+5+...+201\right)\)
\(=1+\frac{1}{2}\left(1+2+3+...+201-1-2\right)\)
\(=1+\frac{1}{2}\left(\frac{201.202}{2}-3\right)=10150\)
\(\frac{21}{5}\left|x\right|< 2019\Rightarrow\left|x\right|< 2019\div\frac{21}{5}=\frac{3365}{7}\)
\(\Rightarrow-480\le x\le480\)
\(\Rightarrow\sum x=-480+480-479+479+...+-1+1+0=0\)
\(\frac{2^{24}\left(x-3\right)}{\frac{81}{35}.\left(6.2^{24}-2^{26}\right)}=\frac{25}{9}\)
\(\Leftrightarrow\frac{2^{24}\left(x-3\right)}{2^{24}\left(6-2^2\right)}=\frac{25}{9}.\frac{81}{35}\)
\(\Leftrightarrow\frac{x-3}{2}=\frac{45}{7}\)
\(\Leftrightarrow x-3=\frac{90}{7}\)
\(\Rightarrow x=\frac{111}{7}\)
giúp mình với nhanh nha, mai nộp rồi!!!
1. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
biết \(m+n+p=0\)
2. Tính:
a) \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
b) \(B=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(9^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(10^4+\frac{1}{4}\right)}\)
bài 1) Đặt \(B=\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\)
Ta có: \(A=B.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}\)
\(B.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}=\frac{m-n}{p}.\frac{p}{m-n}+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}\)
\(=1+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left[\frac{\left(n-p\right).n}{mn}+\frac{\left(p-m\right).m}{mn}\right]=1+\frac{p}{m-n}.\frac{n^2-np+pm-m^2}{mn}\)
\(=1+\frac{p}{m-n}.\frac{\left(m-n\right).\left(p-m-n\right)}{mn}=1+\frac{p.\left(m-n\right).\left(p-m-n\right)}{\left(m-n\right).mn}=1+\frac{p.\left(p-m-n\right)}{mn}\)
\(=1+\frac{p^2-pm-pn}{mn}=1+\frac{p^2-p.\left(m+n\right)}{mn}\)
Vì m+n+p=0=>m+n=-p
\(=>B.\frac{p}{m-n}=1+\frac{p^2-p.\left(-p\right)}{mn}=1+\frac{2p^2}{mn}=1+\frac{2p^3}{mnp}\left(1\right)\)
\(B.\frac{m}{n-p}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{m}{n-p}=\frac{m-n}{p}.\frac{m}{n-p}+\frac{n-p}{m}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}\)
\(=1+\frac{m-n}{p}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}=1+\frac{m}{n-p}.\left(\frac{m-n}{p}+\frac{p-m}{n}\right)\)
\(=1+\frac{m}{n-p}.\left[\frac{\left(m-n\right).n}{np}+\frac{\left(p-m\right).p}{np}\right]=1+\frac{m}{n-p}.\frac{mn-n^2+p^2-mp}{np}\)
\(=1+\frac{m}{n-p}.\frac{\left(n-p\right).\left(m-n-p\right)}{np}=1+\frac{m.\left(n-p\right).\left(m-n-p\right)}{\left(n-p\right).np}=1+\frac{m.\left(m-n-p\right)}{np}\)
\(=1+\frac{m^2-mn-mp}{np}=1+\frac{m^2-m\left(n+p\right)}{np}=1+\frac{m^2-m.\left(-m\right)}{np}=1+\frac{2m^2}{np}=1+\frac{2m^3}{mnp}\left(2\right)\) (vì m+n+p=0=>n+p=-m)
\(B.\frac{n}{p-m}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{n}{p-m}=\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}+\frac{p-m}{n}.\frac{n}{p-m}\)
\(=1+\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}=1+\frac{n}{p-m}.\left(\frac{m-n}{p}+\frac{n-p}{m}\right)\)
\(=1+\frac{n}{p-m}.\left[\frac{\left(m-n\right).m}{pm}+\frac{\left(n-p\right).p}{pm}\right]=1+\frac{n}{p-m}.\frac{m^2-mn+np-p^2}{pm}\)
\(=1+\frac{n}{p-m}.\frac{\left(p-m\right).\left(n-p-m\right)}{pm}=1+\frac{n.\left(p-m\right).\left(n-p-m\right)}{\left(p-m\right).pm}=1+\frac{n.\left(n-p-m\right)}{pm}\)
\(=1+\frac{n^2-np-mn}{pm}=1+\frac{n^2-n\left(p+m\right)}{pm}=1+\frac{n^2-n.\left(-n\right)}{pm}=1+\frac{2n^2}{pm}=1+\frac{2n^3}{mnp}\left(3\right)\) (vì m+n+p=0=>p+m=-n)
Từ (1),(2),(3) suy ra :
\(A=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}=\left(1+\frac{2p^3}{mnp}\right)+\left(1+\frac{2m^3}{mnp}\right)+\left(1+\frac{2n^3}{mnp}\right)\)
\(=3+\frac{2p^3}{mnp}+\frac{2m^3}{mnp}+\frac{2n^3}{mnp}=3+\frac{2.\left(m^3+n^3+p^3\right)}{mnp}\)
*Tới đây để tính được m3+n3+p3,ta cần CM được bài toán phụ sau:
Đề: Cho m+n+p=0.CMR: \(m^3+n^3+p^3=3mnp\)
Từ m+n+p=0=>m+n=-p
Ta có: \(m^3+n^3+p^3=\left(m+n\right)^3-3m^2n-3mn^2+p^3=-p^3-3mn\left(m+n\right)+p^3\)
\(=-3mn\left(m+n\right)=-3mn.\left(-p\right)=3mnp\)
Vậy ta đã CM được bài toán phụ
*Trở lại bài toán chính: \(A=3+\frac{2.3mnp}{mnp}=3+\frac{6mnp}{mnp}=3+6=9\)
Vậy A=9
bài 2)
a)Nhận thấy các thừa số của A đều có dạng tổng quát sau:
\(n^3+1=n^3+1^3=\left(n+1\right)\left(n^2-n+1\right)=\left(n+1\right).\left(n^2-n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n+1\right).\left(n^2-2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n+1\right).\left[\left(n-\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]\)
\(n^3-1=n^3-1^3=\left(n-1\right)\left(n^2+n+1\right)=\left(n-1\right).\left(n^2+n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n-1\right).\left(n^2+2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n-1\right).\left[\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]\)
suy ra \(\frac{n^3+1}{n^3-1}=\frac{\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]}{\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]}\)
Do đó: \(\frac{2^3+1}{2^3-1}=\frac{\left(2+1\right).\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right).\left[\left(2+0,5\right)^2+0,75\right]}=\frac{3.\left(1,5^2+0,75\right)}{1.\left(2,5^2+0,75\right)}\)
\(\frac{3^3+1}{3^3-1}=\frac{\left(3+1\right).\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right).\left[\left(3+0,5\right)^2+0,75\right]}=\frac{4.\left(2,5^2+0,75\right)}{2.\left(3,5^2+0,75\right)}\)
...........................
\(\frac{10^3+1}{10^3-1}=\frac{\left(10+1\right).\left[\left(10-0,5\right)^2+0,75\right]}{\left(10-1\right).\left[\left(10+0,5\right)^2+0,75\right]}=\frac{11.\left(9,5^2+0,75\right)}{9.\left(10,5^2+0,75\right)}\)
\(=>A=\frac{3\left(1,5^2+0,75\right).4\left(2,5^2+0,75\right)........11.\left(9,5^2+0,75\right)}{1\left(2,5^2+0,75\right).2.\left(3,5^2+0,75\right)........9\left(10,5^2+0,75\right)}=\frac{3.4........11}{1.2......9}.\frac{1,5^2+0,75}{10,5^2+0,75}\)
\(=\frac{10.11}{2}.\frac{1}{37}=\frac{2036}{37}\)
Vậy A=2036/37
b) có thể ở chỗ 1+1/4 bn nhầm,phải là \(1^4+\frac{1}{4}\) ,mà chắc cũng chẳng sao,vì 14=1 mà
Nhận thấy các thừa số của B có dạng tổng quát:
\(n^4+\frac{1}{4}=n^4+n^2+\frac{1}{4}-n^2=\left(n^2\right)^2+2.n^2.\frac{1}{2}+\frac{1}{4}-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2+\frac{1}{2}-n\right)\left(n^2+\frac{1}{2}+n\right)\)
\(B=\frac{\left(1^2+\frac{1}{2}-1\right).\left(1^2+\frac{1}{2}+1\right).\left(3^2+\frac{1}{2}+3\right).\left(3^2+\frac{1}{2}-3\right)..........\left(9^2+\frac{1}{2}-9\right).\left(9^2+\frac{1}{2}+9\right)}{\left(2^2+\frac{1}{2}-2\right).\left(2^2+\frac{1}{2}+2\right).\left(4^2+\frac{1}{2}-4\right).\left(4^2+\frac{1}{2}+4\right)......\left(10^2+\frac{1}{2}-10\right).\left(10^2+\frac{1}{2}+10\right)}\)
Mặt khác,ta cũng có: \(\left(a+1\right)^2-\left(a+1\right)+\frac{1}{2}=a^2+2a+1-a-1+\frac{1}{2}=a^2+a+\frac{1}{2}\)
Suy ra \(B=\frac{1^2+\frac{1}{2}-1}{10^2+\frac{1}{2}+10}=\frac{1}{221}\)
Vậy B=1/221
Câu 1:
a) tính giá trị các biểu thức sau:
A=2[(62 - 24) : 4] + 2014
B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)
b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
Câu 2:
a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)
b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42
c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Câu 3:
a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố
b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b
c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên
câu 4:
1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm
a)tính MN
b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP
c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN
2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó
Câu 5:
a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)
b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n
Tìm các số nguyên x, biết: \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{-2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Mình đag cần rất gấp. Ai làm nhanh mình tick. Mong mn giúp mình với
Tìm các số nguyên x biết : \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Mình đag cần rất gấp. Ai lm nhanh mình tick. Mong mn giúp mình với
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)
=> -1,44444444444........... ≤ x ≤ 0,6111111111...........
Mà x ∈ Z
=> x ∈ { -1 ; 0 }
\(x\in\varnothing\)