Cho a,b,c>0 và a+b+c=1
chứng minh \(\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}\le\frac{9}{4}\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Cho a,b,c>0 Chứng minh \(\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}+\frac{\sqrt{ab}}{c+3\sqrt{ab}}\le\frac{3}{4}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Bài 1: Cho a,b,c >0 và ab+bc+ca=3abc.
Chứng minh: \(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Bài 2: Cho a,b > 0; \(2a+b\ge7.\)
Tìm GTNN của: S=\(a^2-a+3b+\frac{9}{a}+\frac{1}{b}+9\)
Help me!!!
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)
Cho a,b,c>0 và ab+bc+ca=3 chứng minh \(\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\le\frac{3}{8}\)
Cho a, b, c > 0. Chứng minh:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{2}\left(a+b+c\right)\)
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{ab}{2\sqrt{ab}}+\frac{bc}{2\sqrt{bc}}+\frac{ca}{2\sqrt{ca}}\) (bất đẳng thức cô-si)
\(=\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ca}}{2}\)
\(=\frac{1}{4}\left(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\right)\)
\(\le\frac{1}{4}\left(a+b+b+c+c+a\right)\)(bất đẳng thức cô si)
\(=\frac{1}{2}\left(a+b+c\right)\)
Dấu '=' xảy ra khi a=b=c
Cho a+b+c=1 (a,b,c>0). CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html