chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia het cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
tui mới học lớp 6 thui mà, nguyên lý Directle là gì sao tui bt dc
Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20152015...2015 chia hết cho 41.
Chứng minh rằng: có thể tìm được số có dạng 20152015...201500...0 chia hết cho 2015
Chứng minh rằng 1 số có dạng 20152015...2015 chia hết cho 41
lấy 42 số 2015 ta có 20152015...2015(có 42 số)
chia cho 41 ta được 42 số dư ,mỗi số dư nhận được 1 trong 41 số :0;1;2;3;...;40
Do đó phải có ít nhất hai số có cùng số dư khi chia cho 41.khi đó hiệu của chúng chia hết cho 41
Giả sử : 20152015...2015(m số 2015) - 20152015...2015(m số 2015)=20152015...2015(m - n số 2015).104nchia hết cho 41(m>n)
vì 104n và 41 là hai số nguyên tố cùng nhau
=>20152015...2015 chia hết cho 41
vậy tồn tại 1 số có dạng 20152015...2015 chia hết cho 41
CMR có thể tìm được một số tự nhiên có dạng 20152015...2015\(⋮\)41
Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20162016...2016 chia hết cho 41.
chứng minh rằng nếu a và b là các số tự nhiên thỏa mãn 5a+3b và 13a+8b cũng chia hết cho 2015 thì a chia hết cho 2015 và b cũng chia hết chia hết cho 2015
2)tìm số tự nhiên n để
(15-2n) chia hết cho (n+1) với n nhỏ hơn hoặc bằng 7
Cho 2015 số tự nhiên bất kì :a1;a2;a3;...;a2015.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 2015
~ Giúp mk vs ~
chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà chia hết cho 2015
20 hay sao ay ban a
kb voi mk nha nha nha
tk mk nha nha nha
mk se k va kb lai