A=2017+2018/2018+2019 và B = 2017/2018+2018/2019
So Sánh
so sánh A=2017+2018 /2018+2019 và B=2017/2018+2018/2019
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
so sánh: A= 2017+2018/2018+2019 với B= 2017/2018+2018/2019
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
so sánh: 2018^2019-2018^2017 và 2018^2017-2018^2015
Ta có: 20182019 - 20182017 = 20182017(20182 - 1)
20182017 - 20182015 = 20182015(20182 - 1)
Vì 20182017(20182 - 1) > 20182015(20182 - 1)
=> 20182019 - 20182017 > 20182017 - 20182015
Vậy 20182019 - 20182017 > 20182017 - 20182015
so sánh A và B A=2016/2017-2017/2018+2018/2019-2019/2020 B=-1/2016-2017 - 1/2018-2019
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
So sánh
P= 2016/2017+2017/2018+2018/2019 và
Q= 2+2016+2017+2018/2017+2018+2019
Ghi đầy đủ các bước hộ mk nha
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
So sánh hai hiệu : 2018^2019-2018^2018 và 2018^2018-2018^2017
Có 20182019-20182018=20182018+1-20182018=20182018(2018-1)=20182018.2019 (1)
20182018-20182017=20182017+1-20182017=20182017(2018-1)=20182017.2019 (2)
Từ (1);(2)=>20182019-20182018>20182018-20182017