tìm x biết lx-2012l+lx-2013l=2014
Tìm x và y biết: lx-1/2012l+lx+yl=0
Suy ra các giá trị trong trị tuyệt đối đều =0
\(\Rightarrow x-\frac{1}{2012}=0\Rightarrow x=\frac{1}{2012}\)
\(\left|x+y\right|=0\Rightarrow\left|\frac{1}{2012}+y\right|=0\Rightarrow y=-\frac{1}{2012}\)
Đúng đó nha
Tìm x, y biết rằng:
lx-2013l+lx-2014l+ly-2015l+lx-2016l=3
Bổ đề (I): Cho 2 số thực a, b thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html
Quay trở lại giải bài toán ban đầu.
Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)
Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)
Thử lại thấy thoả mãn.
Vậy x = 2014, y = 2015.
\(\left(x;y\right)\in\left\{\left(2014;2015\right)\right\}\)
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|+\left|y-2015\right|=3\)
Ta có +) \(\left|x-2013\right|+\left|2016-x\right|\ge\left|x-2013+2016-x\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2013\right)\left(2016-x\right)\ge0\Leftrightarrow2013\le x\le2016\)
+) \(\left|x-2014\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow x-2014=0\Leftrightarrow x=2014\)
+) \(\left|y-2015\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y-2015=0\Leftrightarrow y=2015\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\ge3\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\\x=2014\\y=2015\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)
tìm giá trị lớn nhất của A= 2014-lx-2013l
Để A lớn nhất thì |x-2013| phaair nhỏ nhất mà giá trị nhỏ nhất của |x-2013| là 0
=> giá trị lớn nhất của A là 2014 (khi đó x=2013)
Tìm GTLN của biểu thức: A=2020-lx-2013l+lx-2014l-+x-2015l
Tìm GTNN của
a, H=lx-1l +lx-2l +...+lx-100l
b, G=lx-2013l +lx-2014l +lx-2015l
Tìm GTLN của biểu thức: A=2020-lx-2013l-lx-2014l-lx-2015l
giải phương trình lx-2011l^2011 + lx-2012l^2012 =1
Với x=2011, x=2012 là nghiệm của PT
1. Nếu x < 2011 => x- 2012 < -1 => lx-2012l > 1 => lx-2012l^2012 > 1
=> lx-2011l^2011 + lx-2012l^2012 > 1 => Vô nghiệm
2. Nếu x > 2012 => x- 2011 > 1 => lx-2011l > 1 => lx-2011l^2011 > 1
=> lx-2011l^2011 + lx-2012l^2012 > 1 => Vô nghiệm
3. Nếu 2011 < x < 2012
=> lx-2011l < 1 => lx-2011l^2011 < | x-2011| = x - 2011 (Do mũ của số nhỏ hơn 1 nghịch biến)
=> |x-2012| < 1=> |x-2012|^2012 < |x-2012| = 2012 -x
=> lx-2011l^2011 + lx-2012l^2012 < x - 2011 + 2012 - x =1 => Vô nghiệm
Vậy x=2011, x=2012 là nghiệm duy nhất của PT
lx-2013l+x-2013=0 tìm x thuộc z
TH2:
x < 2013
-x + 2013 + x - 2013 = 0
-x + x + 2013 - 2013 = 0
0 = 0 => x = 0
Vậy x= 0
Do đó x thuộc {0 ; 2013}
|x - 2013| + x - 2013 = 0
Nếu x >/2013
x - 2013 + x - 2013 = 0
2x = 4026
x = 2013
Nếu x < 2013
-x + 2013 + x - 2013 = 0
Vậy x = 2013
Cho biểu thức A=\(\frac{2016}{lx-2015l+lx-2013l}\)
của A và tìm tất cà số nguyên x để A đặt GTLN