A = 5^2 / 6.11 + 5^2 / 11.16 + 5^2 / 16.21.....+ 5^2 / 91.96
52/6.11 + 52/11.16 + ............+ 52/91.96
\(\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+...+\frac{5^2}{91\cdot96}\)
\(=5\left(\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{91\cdot96}\right)\)
\(=5\left(\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{91}-\frac{1}{96}\right)\)
\(=5\left(\frac{1}{6}-\frac{1}{96}\right)\)\(=5\cdot\frac{5}{32}\)\(=\frac{25}{32}\)
ta gọi biểu thức trên là A
ta có :\(A=\frac{5^2}{6x11}+\frac{5^2}{11x16}+.........+\frac{5^2}{91x96}.\)
\(=\frac{1}{5}\left(\frac{5}{6}-\frac{5}{11}\right)+\frac{1}{5}\left(\frac{5}{11}-\frac{5}{16}\right)+.........+\frac{1}{5}\left(\frac{5}{91}-\frac{5}{96}\right)\)
\(=\frac{1}{5}\left(\frac{5}{6}-\frac{5}{11}+\frac{5}{11}-\frac{5}{16}+........+\frac{5}{91}-\frac{5}{96}\right)\)
\(=\frac{1}{5}\left(\frac{5}{6}-\frac{5}{96}\right)\)
\(=\frac{1}{5}x\frac{25}{32}\)
\(=\frac{5}{32}\)
vậy biểu thức \(A=\frac{5}{32}\)
E=5^2/1.6+5^2/6.11+5^2/11.16+5^2/16.21+5^2/21.26+5^2/26.31
. là nhân
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)
S= 52/1.6 + 52/6.11 + 52/11.16 + 52/16.21 + 52/21.26 = ?
S:5=\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{21.26}\)
S:5=\(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{26-21}{21.26}\)
S:5=\(\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+...+\frac{26}{21.26}-\frac{21}{21.26}\)
S:5=1-\(\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{21}-\frac{1}{26}\)
S:5=1-\(\frac{1}{26}\)
S:5=\(\frac{25}{26}\)
S=\(\frac{25}{26}.5\)
S=\(\frac{125}{26}\)
Tìm A
A= 52/1.6 + 52/6.11 +52/11.16 +52 /16.21 + 52 /21.26
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
= \(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
=\(5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)=\(5\left(1-\frac{1}{26}\right)\)
=\(5.\frac{25}{26}\)
=\(\frac{125}{26}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
Ta có:
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}\)
Vậy \(A=\frac{150}{31}\)
Tính:
52/1.6 + 52/ 6.11 + 52/11.16 + 52/16.21 + 52/21.26 + 52/26.31
Ta có : \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+.....+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\) =?
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{5.30}{31}=\frac{150}{31}\)
(x+3).(2y-1)=9
S=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
Tinh
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+....+\(\frac{5^2}{26.31}\)=\(\frac{25}{1.6}\)+\(\frac{25}{6.11}\)+.....+\(\frac{25}{26.31}\)
\(\frac{1}{5}\)A=\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+....+\(\frac{5}{26.31}\)=1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+....+\(\frac{1}{26}\)-\(\frac{1}{31}\)=1-\(\frac{1}{31}\)=\(\frac{30}{31}\)
A=\(\frac{30}{31}\):\(\frac{1}{5}\)
A=\(\frac{150}{31}\)