Tìm số dư của phép chia:
x^2004+x^2003+x^2002+x+1 cho 1-x^2
tìm số x,y,x TM\(\frac{\sqrt{x-2002}-1}{x-2002}+\frac{\sqrt{y-2003}-1}{y-2003}+\frac{\sqrt{z-2004}-1}{z-2004}=\frac{3}{4}\)
\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)
\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)
\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)
\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)
=> không có giá trị x,y,z thỏa mãn đề
Tìm x biết Ax + B = C
A = 158 x 12 - 12/7 - 12/289 -12/85 // 4 - 4/7 - 4/289 - 4/85 : 1/6 x 505505505 / 711711711 - 2005
B = 2003 x [2004 ^2003 + 2004^2002 + ..... + 2004 + 1] - 2004^2004 - 5
C= 2003 x 1986 + 2002 x 17 + 2020 / 2003 x 2004 - 2003 ^2
jup mik nhe
tìm số dư trong phép chia của biểu thức:
(x+1)(x+3)(x+5)(x+7)+2004 cho x^2+8x+1
có (x+1)(x+3)(x+5)(x+7)+2004
=(x2+8x+7)(x2+8x+15)+2004
=[(x2+8x+1)+6][(x2+8x+1)+14]+2004
=(x2+8x+1)2+20(x2+8x+1)+84+2004
=(x2+8x+1)2+20(x2+8x+1)+2088
vì (x2+8x+1)2 chia hết chox2+8x+1
20(x2+8x+1) chia hết cho x2+8x+1
=>(x+1)(x+3)(x+5)(x+7)+2004 chia cho x2+8x+1 dư 2088
Tìm x biết, (x-1)/ 2004 + (x-2)/ 2003 - (x-1) / 2002= (x-4)/ 2001
1) xét xem:
a) 2002^2003+2003^2002 có chia hết cho 2 không?
b) 3^4n-6 có chia hết cho 5 không ?(n thuộc N*)
c) 2001^2002-1 có chia hết ho 10 không
2) Tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2
3) tìm x,y thuộc N, biết rằng2^x +242=3y
Tìm số dư trong phép chia :
(x+1)(x+3)(x+5)(x+7) + 2004 cho x^2 + 8x +1
Tìm số dư trong phép chia :
(x+1)(x+3)(x+5)(x+7) + 2004 cho x^2 + 8x +1
(x+1)(x+3)(x+5)(x+7) + 2004
= ( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 2004
đặt x2 + 8x + 1 = a
\(\Rightarrow\)( a + 6 ) ( a + 14 ) + 2004
= a2 + 20a + 84 + 2004
= a2 + 20a + 2088
Ta thấy a2 + 20a \(⋮\)x2 + 8x + 1
\(\Rightarrow\)(x+1)(x+3)(x+5)(x+7) + 2004 chia x2 + 8x + 1 dư 2088
Tìm số dư trong phép chia :
(x+1)(x+3)(x+5)(x+7) + 2004 cho x^2 + 8x +1
Tìm x biết: (x-1/2004)+(x-2/2003)-(x-3/2002)=x-4/2001
\(\left(x-\frac{1}{2004}\right)+\left(x-\frac{2}{2003}\right)-\left(x-\frac{3}{2002}\right)=x-\frac{4}{2001}\)
\(x-\frac{1}{2004}+x-\frac{2}{2003}-x+\frac{3}{2002}-x=-\frac{4}{2001}\)
\(x+x-x-x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(0x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(\Rightarrow\) Vô lý
Vậy \(x\in\phi\)