Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hỏa Hỏa
Xem chi tiết
Trịnh Thị Hương
Xem chi tiết
ξ(✿ ❛‿❛)ξ▄︻┻┳═一
1 tháng 3 2020 lúc 20:32

bạn ơi,cs thể viết rõ đề bài ra đc k

Khách vãng lai đã xóa
Công chúa Lọ Lem
Xem chi tiết
alibaba nguyễn
2 tháng 3 2017 lúc 16:03

Giải tạm trong câu này chứ không thấy đề ở đâu hết. Với n dương

So sánh \(\frac{n}{n+3};\frac{n+1}{n+2}\)

Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì cùng tử nên mẫu bé hơn thì lớn hơn) (1)

Ta lại có: \(\frac{n}{n+2}< \frac{n+1}{n+2}\) (vì cùng mẫu nên tử lớn hơn thì lớn hơn) (2)

Từ (1) và (2) \(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)

ngonhuminh
3 tháng 3 2017 lúc 8:40

Ô hay! giải phương trình có phải C/M bất đẳng thức đâu.

ngonhuminh
3 tháng 3 2017 lúc 9:09

Lớp 6 khoai quá

hd: TÁCH SỐ HẠNG mẫu tạo các phân số đối;

\(\frac{1}{1.2.3.4}=\frac{1}{6}\left[\frac{1}{1}-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}\right]\)

\(\frac{1}{2.3.4.5}=\frac{1}{6}\left[\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right]\)

\(\frac{1}{3.4.5.6}=\frac{1}{6}\left[\frac{1}{3}-\frac{3}{4}+\frac{3}{5}-\frac{1}{6}\right]\)

\(\frac{1}{4.5.6.7}=\frac{1}{6}\left[\frac{1}{4}-\frac{3}{5}+\frac{3}{6}-\frac{1}{7}\right]\)

\(\frac{1}{5.6.7.8}=\frac{1}{6}\left[\frac{1}{5}-\frac{3}{6}+\frac{3}{7}-\frac{1}{8}\right]\)

....

....

từ số hạng thứ 4 xuất hiện các cặp đối khi n tăng lên--> tự bạn --> nội suy--phần giữa--> triệt tiêu. 

Tổng quát:

\(\frac{1}{n.\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{6}\left[\frac{1}{n}-\frac{3}{n+1}+\frac{3}{n+2}-\frac{1}{n+3}\right]\)

Nguyễn Lâm Nghĩa
Xem chi tiết
boi đz
5 tháng 8 2023 lúc 21:37

\(A=\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+\dfrac{1}{3\cdot4\cdot5\cdot6}+....+\dfrac{1}{9\cdot10\cdot11\cdot12}\)

\(3A=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+\dfrac{3}{3\cdot4\cdot5\cdot6}+...+\dfrac{3}{9\cdot10\cdot11\cdot12}\)

\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{9\cdot10\cdot11}-\dfrac{1}{10\cdot11\cdot12}\)\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{10\cdot11\cdot12}\)

\(A=\dfrac{1}{2}-\dfrac{1}{440}\)

\(A=\dfrac{219}{440}\)

Edogawa Conan
Xem chi tiết
Kai To Kid
Xem chi tiết
Bùi Thế Hào
12 tháng 3 2018 lúc 15:40

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)

=> \(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{27.28.29.30}\)

=> \(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

=> \(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}=\frac{14.29.10-1}{28.29.30}=\frac{4059}{28.29.30}\)

=> \(A=\frac{4059}{28.29.30}:3=\frac{1353}{28.29.30}=\frac{451}{28.29.10}\)

=> \(A=\frac{451}{8120}\)

Nguyễn Duy Anh Quốc
Xem chi tiết
Đỗ Đình Dũng
4 tháng 4 2016 lúc 12:42

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)

\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)

Đỗ Đình Dũng
4 tháng 4 2016 lúc 12:47

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)

=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)

=\(\frac{1}{18}-\frac{1}{5821200}\)

Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 13:29

Ta có \(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\dfrac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29\cdot30}\\ =\dfrac{1}{3}\left(\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{24360}\right)=\dfrac{1}{3}\cdot\dfrac{1353}{8120}=\dfrac{451}{8120}\)

 

Lấp La Lấp Lánh
26 tháng 9 2021 lúc 13:33

\(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{27.28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\right)=\dfrac{1}{3}.\dfrac{4060-1}{28.29.30}\)

\(=\dfrac{1}{3}.\dfrac{4059}{24360}=\dfrac{1353}{24360}=\dfrac{451}{8120}\)

Lê Quang Duy
Xem chi tiết