CMR
24^54 nhân 54^24 nhân 2^10 chia hêt cho 72^63
CMR 24 mũ 54 nhân 54 mũ 24 nhân 2 mũ 10 chia hết 72 mũ 63
CMR
2454.5424.210 CHIA HẾT CHO 7263
CMR:2454.5424 210 chia het cho 7263
CMR :
2454 x 54 24 x 210 chia hết cho 7263
dấu x là dấu nhân
giúp mình với
\(24^{54}.54^{24}.2^{10}\\ =8^{54}.3^{54}.27^{54}.2^{54}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{54}.2^{10}\\
=2^{226}.3^{126}\\
=2^{3.63+37}.3^{2.63}\\
=8^{63}.9^{63}.2^{37}\\
=72^{63}.2^{37}\)
Dễ thấy \(72^{63}.2^{37}⋮̸72^{63}\)
cmr 2454. 5424. 210 chia het 7263
24^54 × 54^24 × 2^10 chia hết cho 72^63
CMR:\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
\(24^{54}.54^{24}.2^{10}=3^{54}.2^{162}.2^{24}.3^{72}.2^{10}=3^{126}.2^{196}\)
ta có: \(72^{63}=9^{63}.8^{63}=\left(3^2\right)^{63}.\left(2^3\right)^{63}=3^{72}.2^{108}\)
ta có: \(\frac{3^{126}.2^{196}}{3^{72}.2^{108}}=3^{54}.2^{88}\)
suy ra \(3^{126}.2^{196}\) chia hết cho \(3^{72}.2^{108}\)
suy ra \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
Chứng minh rằng: 24^54 . 24^54 . 2^10 chia hết cho 72^63
CMR
\(^{24^{54}.54^{24}.2^{10}⋮72^{63}}\)
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
Mà \(2^{196}.3^{126}⋮2^{189}.3^{126}\Rightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\)