1/100 nhé tính giúp mình với
\((1+\frac{1}{2})\times(1+\frac{1}{3})\times(1+\frac{1}{4})\times...\times(1+\frac{1}{100})\)
Tính nhanh:
\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times\left(1+\frac{1}{5}\right)\times......\times\left(1+\frac{1}{100}\right)\)
Các bạn trình bày + kết quả nhé.
= 3/2 + 4/3 + 5/4 ................................ 100/99
= 100/2 = 50
Các bạn ơi giúp mình giải bài này với:
Đề bài:Cho A=\((\frac{1}{2^2}-)\times(\frac{1}{2^2}-1)\times(\frac{1}{4^2}-1)\times...(\frac{1}{100^2}-1)\)
mình đánh thiếu đề bài ở cuối còn có ''So sánh A với \(-\frac{1}{2}\)
Giúp mình giải bài này với!
Cho K=\(\left\{\frac{1}{2^2}-1\right\}\times\left\{\frac{1}{3^2}-1\right\}\times\left\{\frac{1}{4^2}-1\right\}\times...\times\left\{\frac{1}{100^2}-1\right\}\)
So sánh K với \(\frac{-1}{2}\)
\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
1.Tính nhanh
a,\(\frac{1}{1\times4}+\frac{1}{4\times7}+............+\frac{1}{97\times100}\)
b,\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...........\times\frac{99}{100}\)
c,\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...........\times\frac{99}{100}\)
d,\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times............\times\left(\frac{1}{99}+1\right)\)
e,\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times..........\times\left(1-\frac{1}{100}\right)\)
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
TÍNH \(\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\times......\times\left(1-\frac{1}{2006}\right)\)
CÁC BẠN ƠI TÍNH GIÚP MÌNH BÀI NÀY VỚI
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại
BT: Rút gọn: \(A=\frac{\left(1+2+3+...+99+100\right)\times\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\times\left(63\times1,2-21\times3,6+1\right)}{1-2+3-4+5-6+...+99-100}\)
Giúp mình với!!! Tối mai mình học rồi!!! Cảm ơn các bạn nhiều!!!
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
TÍNH
\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Dễ thấy 6,3 . 12 - 21 . 3,6 = 63 . 1,2 - 63 . 1,2 = 0
Do đó biểu thức trên bằng 0
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{100}\right)\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)
\(=\frac{1}{100}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}...\frac{100-1}{100}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}=\frac{1}{100}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(\Rightarrow\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}\)
\(\Rightarrow\frac{1.2.3.4.5......99}{2.3.4.....100}\)
Áp dụng tính chất loại bỏ dần ta được kết quả.
\(=\frac{1}{100}\)
1) Rút gọn biểu thức M:
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{2}{11}}\)
2) Tính nhanh:
\(A=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times....\times\left(1-\frac{1}{100}\right)\)
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt