Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Phương Các Trần
Xem chi tiết
Đinh Tuấn Việt
19 tháng 7 2015 lúc 19:43

\(ab+bc+ca=14\)

Nguyen Thi Thanh Thao
Xem chi tiết
Hoang Hung Quan
12 tháng 3 2017 lúc 9:46

Ta có:

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)

\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)

\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)

Vậy \(a=b=c\) (Đpcm)

nguyên công quyên
Xem chi tiết
Phan Minh Đức
Xem chi tiết
Tô Hà Thu
31 tháng 8 2021 lúc 20:48

bn có thể cho chữ bình thường đc ko? Thế này khó nhìn quá!

 

tiphanni
Xem chi tiết
Trần Nam Hải
Xem chi tiết
kudo shinichi
7 tháng 10 2018 lúc 20:06

\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)

\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)

\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)

\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)

\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)

\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)

\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)

\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)

\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)

\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)

\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)

Tham khảo nhé~

Trần Nam Hải
8 tháng 10 2018 lúc 11:59

thank you

Nguyễn Vân
Xem chi tiết
Little_Princess_From_The...
Xem chi tiết
Lê Tài Bảo Châu
1 tháng 6 2020 lúc 2:40

Áp dụng bất đẳng thức cô si vào 3 số a,b,c không âm ta có:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)( dpcm )

Khách vãng lai đã xóa