Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Chi Hieu
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Đoàn Thế Nhật
Xem chi tiết
Mai Linh
9 tháng 5 2016 lúc 16:48

5\(x^2\)+8xy +5\(y^2\)=36

=>5(x+y)^2 -2xy=36

=> -2xy= 36-5(x+y)^2

Ta lại có T= \(x^2\)+\(y^2\)= (x+y)^2 -2xy= (x+y)^2 +36- 5(x+y)^2= 36-4(x+y)^2

 mà -4(x+y)^2<= 0 với mọi x y nên T= 36-4(x+y)^2<= 36

dấu = xảy ra khi x=-y

Đoàn Thế Nhật
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
An Vy
Xem chi tiết

A=x3+y3=(x+y)(x2-xy+y2)

=(x+y)2\(\ge\)0

Dấu "=" xảy ra khi x=-y

liên hoàng
Xem chi tiết
Bản sao hkt
Xem chi tiết
Thanh Tùng DZ
3 tháng 5 2020 lúc 15:14

gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y

\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)

Từ ( 2 ) suy ra y = x + 2004 - m

Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)

\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )

Hệ PT có nghiệm khi PT ( 3 ) có nghiệm 

\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)

\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)

\(\Leftrightarrow1974\le m\le2034\)

từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)

GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)

Khách vãng lai đã xóa
Renian Karin
Xem chi tiết
Cao Phan Tuấn Anh
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn