n thuộc N chứng tỏ phân số 2n+1005/4n+2011
Cho n thuộc N ,chứng tỏ phân số 2n+1005/4n+2011 là phân số tối giản
Giúp tớ với ạ !!
Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*)
\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*)
theo bài ra ta có
2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d
4n+2011\(⋮\)d
\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d
\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản
1 . Cho n thuộc N , chứng tỏ phân số 2n + 1005 / 4n + 2011 luôn tối giản
Chứng tỏ 2n+3/4n+7 là phân số tối giản với n thuộc Z
Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)
=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
=> (4n+7)-(4n+6) chia hết cho d
=> 4n+7-4n-6 chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N
=> d=1 => ƯCLN (2n+3; 4n+7)=1
=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z
Gọi d là ƯC(2n + 3 ; 4n + 7)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)
=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d
=> 2 chia hết cho d
* d = 1 => 2n + 3 chia hết cho 1
* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2
=> d = 1
=> ƯCLN(2n + 3; 4n + 7) = 1
=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )
Gọi ƯCLN(2n+3;4n+7) = d (d thuộc N*)
Ta có:\(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\frac{2n+3}{4n+7}\)là phân số tối giản với mọi n thuộc Z(ĐPCM)
chứng tỏ: 2n+1005/4n+2001 là p/số tối giản
=>UCLN(2n+1005,4n+2001)=1
gọi d la UC(2n+1005,4n+2001)
=>2n+1005 chia hết cho d và 4n+2001 chia hết cho d
=>4n+2010 chia hết cho d và 4n+2001 chia hết cho d
=>4n+2010-4n-2001 chia het cho d
=>9 chia het cho d
=> de bai cho sai roi
chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 (n thuộc Z ) đều là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)
={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
Bài 1 : Chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 ( n thuộc N ) đều lá phân số tối giản ?
Gọi d là ƯC(2n+1;4n+6)
Ta có 2n+1 chia hết cho d
4n+6 chia hết cho d
=> 2(2n+1) chia hết cho d
4n+6 chia hết cho d
=> 4n+2 chia hết cho d
4n+6 chia hết cho d
=> (4n+6)-(4n+2) chia hết cho d
=> 4 chia hết cho d
= d E Ư(4)={-1;1;-2;2;-3;3;-4;4}
Vì 2n+1 là số lẻ nên nó ko chia hết cho -2;2;-4;4
Vậy d chỉ có thể là -1 và 1
Vì d chỉ có thể là -1 hoặc 1 nên 2n+1/4n+6 là phân số tối giản
chứng tỏ rằng mọi phân số có dạng 2n+1 phần 4n+6 với n thuộc Z đều là phân số tối giản
Gọi UCLN(2n+1,4n+6)=d
Ta có:2n+1 chia hết cho d
4n+6 chia hết cho d
=>2(2n+1) chia hết cho d
4n+6 chia hết cho d
=>4n+2 chia hết cho d
4n+6 chia hết cho d
=>(4n+6)-(4n+2) chia hết cho d
=>4 chia hết cho d
=>d={1,2,4}
Mà 4n+6 không chia hết cho 4
=>d={1,2}
Mà 2n+1 không chia hết cho 2
=>d=1
Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản
Chứng tỏ rằng các phân số sau tối giản với n thuộc N
a)n+1 trên pn+3
b) 2n+3 trên 4n+8
Chứng tỏ với mọi n thuộc N* thì các phân số sau sẽ tối giản:
a)2n+3/6n+8
b)4n+1/14n+3