\(\frac{4}{3.5}+\frac{4}{5.7}+....+\frac{4}{97.99}\)
tính tổng
Tính
a)\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
b)\(\frac{18}{2.5}+\frac{18}{5.8}+...+\frac{18}{203.206}\)
a) \(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=4.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right)\)
\(=4.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=4.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=4.\frac{32}{99}\)
\(=\frac{128}{99}\)
\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=2.\frac{32}{99}\)
\(=\frac{64}{99}\)
\(\frac{18}{2.5}+\frac{18}{5.8}+...+\frac{18}{203.206}\)
\(=6\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{203.206}\right)\)
\(=6\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{203}-\frac{1}{206}\right)\)
\(=6\left(\frac{1}{2}-\frac{1}{206}\right)\)
\(=6.\frac{102}{206}\)
\(=\frac{612}{206}\) ( tự rút gọn
Thực hiện phép tính :
C = \(\frac{4}{3.5}+\frac{4}{5.7}+......+\frac{4}{97.99}\)
mk làm đc,vs điều kiện bạn phải tick cho mk khi mk giải xog, ko đc tick cho ai
tich minh cho minh len thu 8 tren bang sep hang cai
NHANH + ĐÚNG = TICK (đang cần gắp mấy bạn giải nhanh hộ )
Tính nhanh tổng sau : \(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
Tính nhanh : \(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
Tính nhanh tổng sau : \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{51}{51}-\frac{1}{51}\)
\(A=\frac{50}{51}\)
\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{21}{4}.33.\frac{4}{21}\)
\(A=33\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}\)
\(A=\frac{49}{99}\)
a) Tính tổng : \(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{97.99}\)
\(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+..+\frac{5}{97.99}\)
\(=\frac{5}{2}.\left(5+\frac{5}{3}+\frac{5}{5}+\frac{5}{7}+...+\frac{5}{97}+\frac{5}{99}\right)\)
\(=\frac{5}{2}.\left(5+\frac{5}{99}\right)\)
\(=\frac{5}{2}.\frac{500}{99}\)
\(=\frac{1250}{99}\)(có gì sai sót xin bỏ qua cho T^T)
\(S=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{97.99}\)
\(S=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(S=\frac{5}{2}.\left(1-\frac{1}{99}\right)\)
\(S=\frac{5}{2}.\frac{98}{99}\)
\(S=\frac{230}{99}\)
Chúc bạn hok tốt
~k cho mình nhé ~
kb nữa
Tìm giá trị của biểu thức \(P=\frac{2}{1.3}-\frac{4}{3.5}+\frac{6}{5.7}+\frac{8}{7.9}+...-\frac{96}{95.97}+\frac{98}{97.99}\)
Chứng tỏ:
\(\frac{4}{3.5}\)+ \(\frac{4}{5.7}\)+ \(\frac{4}{7.9}\)+.................+ \(\frac{4}{97.99}\)> 65%
ta co : 65%=0,65
goi A= 4.(1/3.5+1/5.7+1/7.9+............+1/97.99)
2A=4.( 2/3.5+2/5.7+2/7.9+...............+2/97.99)
2A=4.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)
2A=4.(1/3-1/99)
2A=4.(33/=99+1/99)
2A=4.34/99
2A=136/99
A=136/99:2
A=68/99=0,69=0,68
Vi A=0,68 > 0,65
=> A > 65%
Tính tổng :
M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.......+\frac{4}{2015.2017}\)
M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)4/1.3 + 4/3.5 + 4/5.7 + ... + 4/2015.2017
M = \(2.\frac{2}{1.3}+2.\frac{2}{3.5}+2.\frac{2}{5.7}+...+2.\frac{2}{2015.2017}\) 2 . 2/1.3 + 2 . 2/3.5 + 2 . 2/5.7 + ... + 2 . 2/2015.2017
M = 2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2015.2017 )
M = 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2015 - 1/2017 )
M = 2 . ( 1 - 1/2017 )
M = 2 . 2016/2017
M = 4032/2017
\(M=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=\frac{4032}{2017}\)
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)
\(M=4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\right)\)
\(M=4.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015.2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=2.\frac{2016}{2017}\)
\(M=\frac{4032}{2017}\)
đề 4:
b) M = \(\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{97.99}\)
ghi rõ cách làm bài
de y \(\frac{1}{3}\)-\(\frac{1}{5}\)=\(\frac{2}{3.5}\)
tuong tu suy ra
M=\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{99}\)
M=\(\frac{1}{3}\)-\(\frac{1}{99}\)
M=\(\frac{32}{99}\)
Tính tổng: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
giúp mik vs, ai nhanh tick luôn nè:)))
=49/99 NHA
HT
k cho mình nha
@@@@@@@@@@@@@@@@@@
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
2A=\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
2A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)
2A=\(1-\frac{1}{99}\)
A=\(\frac{49}{99}\)
Chúc bạn học tốt
HYC-30/1/2022