so sánh B= 2018^100+1/2018^95+1 và C=2018^90+1/2018^85+1
So sánh hai phân số: 2018^100+1/ 2018^90+1 và 2018^99+1/ 2018^89+1
so sanh hai phân số 2018^100 +1 / 2018^90 + 1 và 2018^99 +1/ 2018^89+1
\(\frac{2018^{100}+1}{2018^{90}+1}\)= \(\frac{2018^{10}+1}{1+1}\)\(\frac{2018^{10}+1}{2}\)
\(\frac{2018^{99}+1}{2018^{89}+1}\)= \(\frac{2018^{10}+1}{1+1}\)= \(\frac{2018^{10}+1}{2}\)
=> \(\frac{2018^{100}+1}{2018^{90}+1}=\frac{2018^{99}+1}{2018^{89}+1}\)
nhớ bảo kê nha Duyên
so sánh 2018^100+2018^96+...+2018^4+1/2018^102+2018^100+...+2018^2+1với 1/4
nhanh nha mọi người. Ngày mai mình thi rồi. Ai giải nhanh nhất mình k cho!
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)
\(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)
.....................................
\(1=1\)
\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
so sánh A=2018^2019 -1/2018^2019+1 và B = 2018^2019/2018^2019+2
Ta có: B = (2018 + 2019)/(2019 + 2020) = (2018 + 2019)/4039 = 2018/4039 + 2019/4039
Ta thấy : 2018/2019 > 2018/4039
2019/2020 > 2019/4039
=> 2018/2019 + 2019/2020 > 2018/4039 > 2019/4039
=> 2018/2019 + 2019/2020 > (2018 + 2019)/(2019 + 2020)
=> A > B
SO SÁNH
A=2018^2019-1/2018^2019+1 VÀ B =2018^2019/2018^2019+2
\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)
\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)
Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)
\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)
\(\Rightarrow A< B\)
Vậy .....
so sánh: 2018^2019+1/2018^2020+1 và 2018^2020+1/2018^2021+1
2018^2019+1/2018^2020+1 bé hơn 2018^2020+1/2018^2021+1
So sánh
A = 2018 99 -1 phần 2018100 - 1
B = 201898 -1 phần 201899 - 1
so sánh A và B biết A=1000^2018 +2/1000^2018-1 và B=1000^2018/1000^2018-3
Be De no bi dien rui ak
DIEN | 10% |
DIEN | 60% |
DIEN | 100% |
VAY NO BI DIEN