Cho B=1.2.3.....2012.(1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{2012}\))
CTR B\(⋮\)2013
B=1.2.3...2012.(\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\))
Chung minh rang B chai het cho 2013
giờ để đúng rồi đó anh em
1. Cho A= 1.2.3...2012.\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
CMR: A chia hết cho 2013
a , | 3 - 2x | = x + 1
b , \(\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}\right).x=\frac{2013}{1}+\frac{2012}{2}+......+\frac{2}{2012}+\frac{1}{2013}\)
a, ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)
Ta có: |3-2x|=x+1
=>\(\orbr{\begin{cases}3-2x=x+1\\3-2x=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}x+2x=3-1\\-x+2x=3+1\end{cases}\Rightarrow}\orbr{\begin{cases}3x=2\\x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\left(tmđk\right)\\x=4\left(tmđk\right)\end{cases}}}\)
Vậy x=2/3 hoặc x=4
b, Xét VP ta có: \(\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}+1\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(x=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}=2014\)
Vậy x=2014
cho so A=\(\frac{2013+\frac{1}{2}}{\left(2012+\frac{1}{2}\right)^2+2013+\frac{1}{2}}\)
B=\(\frac{2013+\frac{1}{3}}{\left(2012+\frac{1}{3}\right)^2+2013+\frac{1}{3}}\)
so sanh A va B
\(B=\frac{1-3}{1\cdot3}+\frac{2-4}{2\cdot4}+\frac{3-5}{3\cdot5}+\frac{4-6}{4\cdot6}+............+\frac{2011-2013}{2011.2013}+\frac{2012-2014}{2012\cdot2014}-\frac{2013+2014}{2013\cdot2014}\)
CMR: A=1.2.3...2012(1+\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}⋮2012\))
Sửa đề: CMR: \(A=1.2.3...2012\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)⋮2012\)
Ta có:
\(A=1.2.3...2012\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
là tích trong đó có thừa số là 2012
=> A \(⋮\) 2012
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
CMR: A=1.2.3...2012(1+\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}⋮2012\))
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Đừng tin bn Thạch bạn ấy nói dối đấy
Chuẩn 100% luôn tik nha