Cho các số nguyên a, b thoả mãn :
(8a+3b) chia hết cho 13
CMR : (6a-b) (a+2b) chia hết cho 169
Cho tất cả các số tự nhiên a ; b thoả mãn : 8a + 3b chia hết cho 13 CMR : ( 6a - b ) ( a + 2b ) chia hết cho 169
+) Chứng minh 6a - b chia hết cho 13
ta có (8a + 3b) + 3.(6a - b) = 8a + 3b + 18a - 3b = 26a
Vì 26a; 8a + 3b chia hết cho 13 nên 3.(6a - b) chia hết cho 13 . mà 3 không chia hết cho 13 nên 6a - b chia hết cho 13 => 6a - b = 13.k
+) Chứng minh a + 2b chia hết cho 13
Ta có: 2(8a + 3b) - 3(a + 2b) = 16a + 6b - 3a - 6b = 13a
Vì 8a + 3b chia hết cho 13 nên 2(8a + 3b) chia hết cho 13; 13a luôn chia hết cho 13
=> 3(a + 2b) chia hết cho 13 => a + 2b chia hết cho 13 => a + 2b = 12.q
Vậy (6a - b)(a+ 2b) = 13.k. 13.q = 169.k.q => (6a - b)(a+ 2b) chia hết cho 169
cho (8a+3b) chia hết cho 13. Chứng minh rằng (6a-b)(a+2b) chia hết cho 169
Bạn tham khảo link này nhé!
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
Cho a,b là các số nguyên thoả mãn: 3a+2b chia hết cho 5
CMR : 2a+3b chia hết cho 5
cho a b là các số nguyên thoả mãn (2a +7b) chia hết cho 3 chứng tỏ (4a+2b) chia hết cho 3
Cho a và b là các số nguyên thỏa mãn a+2b chia hết cho 5. Xét xem các số 4a+3b và 3a+b có chia hết cho 5 hay không ?
Ta có : 4(a+2b) - (4a+3b) = 4a + 8b - 4a - 3b = (4a - 4a) + (8a - 3b) = 0+ 5b = 5b
3(a+2b) - (3a+b) = 3a + 6b - 3a - b = (3a - 3a) + (6b - b) = 0 + 5b = 5b
a+2b chia hết cho 5 nên 4(a+2b) và 3(a+2b) cũng chia hết cho 5 mà 5b chia hết cho 5 nên 4a+3b và 3a+b đều chia hết cho 5.
Cho a,b là các số nguyên thoả mãn \(2a^2+3ab+2b^2\)chia hết cho 7.Chứng minh rằng \(a^2-b^2\)chia hết cho 7
\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7
=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.
Tìm các số nguyên dương a; b thoả mãn a+3 chia hết cho b và b+3 chia hết cho a
Lời giải:
Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.
Vì $b=at-3< a$
$\Rightarrow a(t-1)< 3$
$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$
Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$
$\Rightarrow t=1$. Khi đó: $b+3=a$
$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=4$ (tm)
Nếu $b=2$ thì $a=5$ (tm)
Nếu $b=3$ thì $a=6$ (tm)
Nếu $b=6$ thì $a=9$ (tm)
TH2: $a(t-1)=1\Rightarrow a=t-1=1$
$\Rightarrow a=1; t=2$.
$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)
TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$
$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)
Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$
Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.
cho a,b là các số nguyên. Chứng minh rằng: 2a+3b chia hết cho 7 thì 8a+5b chia hết cho 7 và ngược lại
- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow8a+5b+7b⋮7\)
Mà \(7b⋮7\) với mọi b nguyên \(\Rightarrow8a+5b⋮7\)
- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow4\left(2a+3b\right)⋮7\)
Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)
Cho hai số nguyên dương a,b thỏa mãn 3a + 8b và 8a + 3b đều là số chính phương. CMR a,b đều chia hết cho 11