Chứng tỏ rằng: 3n+1 chia hết cho n+1
Mình cần gấp. Nhanh nhé !
Bài 1: Tìm số nguyên n, biết:
a. n+2 chia hết cho n - 1.
b. 3n - 5 chia hết cho n - 2.
Bài 2: Cho x, y thuộc Z. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cùng chia hết cho 31 và ngược lại.
Giải giúp mình nhé mình đang cần gấp. Thanks
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
Bài 1 :
a. n + 2 chia hết cho n - 1
\(\Rightarrow\) \([\) ( n - 1 ) + 3 \(]\) \(⋮\) ( n - 1 )
\(\Rightarrow\) 3 \(⋮\) ( n - 1 )
\(\Rightarrow\) ( n - 1 ) \(\in\) Ư( 3 )
\(\Rightarrow\) ( n - 1 ) \(\in\) ... ( viết tập hợp Ư(3) )
\(\Rightarrow\) n \(\in\) ...
b. 3n - 5 chia hết cho n - 2
\(\Rightarrow\) 3n - 6 + 1 chia hết cho n - 2
\(\Rightarrow\) 3 ( n - 2 ) + 1 chia hết cho n - 2
\(\Rightarrow\) 1 \(⋮\) ( n - 2 )
\(\Rightarrow\) ( n - 2 ) \(\in\) ...... ( viết tập hợp Ư(2) )
\(\Rightarrow\) n \(\in\) ...
Chúc e học tốt nha !
chứng tỏ A=(7^n+1).(7^n+2) chia hết cho 3
giải nhanh nhé mình cần gấp
Chứng tỏ rằng: 3n+1chia hết cho n-1
Nhanh nhé !
Ai làm đúng mình tick cho
chứng tỏ rằng 1+7+72+73+...+7201 chia hết cho 8
trả lời nhanh nhé, mk cần gấp lắm
Co 101 cap 2 so
(1+7)+(7^2+7^3)+...+(7^200+7^201)
(1+7)+7^2(1+7)+...+7^200(1+7)
8+7^2*8+...+7^200*8
8*(1+7^2+...+7^200
Nho cho to nhe!!!!!!!!!
Trả lời :
Bn tham khảo link này :
Câu hỏi của Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Bạn nào giúp mk bài này với: cho số tụ nhiên n biết 2n+1 và 3n+1 là 2 số chính phương. Chứng minh n chia hết cho 40 (Giải nhanh giùm mk nhé, cần gấp lắm ạ).
a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì => x^2 =1 (mod 8)
x^2 =-1(mod 5) hoặc x^2=0(mod 5)
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
Cho n+1 và 2n+1 đều là số chính phương. Chứng tỏ rằng n chia hết cho 24.
Các bạn giúp mình với, mình đang gấp, làm nhanh nhé ! Thanks !
Cho n€ N. Chứng minh rằng : n2+n+1 không chia hết cho 4 và không chia hết cho 5.
Mình cần gấp mong cac bạn trả lời nhanh nhé!
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
Chứng tỏ rằng :
A = ( 1 + 2 + 3 + .... + n ) - 7 không chia hết cho 10 với n là số tự nhiên
Viết câu lời giải ra giùm nha . Mình đang cần gấp nên các bạn giúp mình nhanh nhé . Bạn nào nhanh nhất mình sẽ tick cho
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8