a)Chứng minh phân số sau tối giản:\(\frac{n^3+2n}{n^4+3n^2+1}\)
b)Tìm tất cả các số nguyên để phân số sau tối giản:
\(\frac{18n+7}{21n+7}\) \(\frac{2n+7}{5n+2}\)
bài 2 Tìm tất cả số nguyên n để phân số sau là phân số tối giản
a)\(\frac{18n+7}{21n+7}\)
b)\(\frac{2n+7}{5n+2}\)
\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1
đúng k
1, tìm tất cả số nguyên để phân số tối giản:
\(\frac{18n+3}{21n+7}\)và \(\frac{2n+7}{5n+2}\)
2, tìm số nguyên n để các phân số sau là số nguyên:
A=\(\frac{n^2+4n-2}{n+3}\)
B=\(\frac{4n-3}{3n-1}\)
C=\(\frac{n^2+3n-3}{x-5}\)
Tìm các số nguyên n để phân số sau tối giản:
a) 18n + 3/21n + 7
b) 2n + 7/5n + 2
Tìm tất cả các số nguyên để phân số là phân số tối giản
a)\(\frac{18n+3}{21n+7}\) b)\(\frac{2n+7}{5n+2}\)
Tìm tất cả các số nguyên để phân số sau tối giản:
a)\(\frac{18n+7}{21n+7}\) b)\(\frac{2n+7}{5n+2}\)
hình như bài này mình có trả lời cho bạn rồi
2(4a+1) +17/4a+1
=2(4a+1/4a+1+17/4a+1
=2+17/4a+1
=)17/4a+1(=)17(4a+1)
(=)a=0;4
Câu b làm như trên
a)Tìm tất cả các số dương n để các phân số sau là tối giản:\(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
b)Tìm tất cả các số nguyên n để\(\frac{7n+8}{8n+7}\)có thể rút gọn được
c)Chứng minh rằng nếu\(\frac{5n^2+1}{6}\)nhận giá trị nguyên thì\(\frac{n}{2};\frac{n}{3}\)là các phân số tối giản
Tìm n để phân số tối giản :
a)\(\frac{18n+7}{21n+7}\)
b) \(\frac{2n+7}{5n+2}\)
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
1.chứng tỏ rằng với mọi số nguyên n, các phân số sau đây là phân số tối giản :
\(\frac{15n+1}{30n+1}\)
a)b)\(\frac{n^3+2n}{n^4+3n^2+1}\)
2.Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
3.Tìm phân số \(\frac{a}{a.b}\)biết rằng phân số đó bằng phân số \(\frac{1}{6.a}\)
4.Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\)là số tự nhiên với n thuộc \(ℕ\)thì cả phân số \(\frac{n}{2}\)và\(\frac{n}{3}\)là các phân số tối giản
Ai làm đúng cả 4 bài mk tích cho nhé !!!