Chứng minh rằng: 1 . 3 . 5 . 7 .....99 = 51/2 . 52/2 . 53/2 . 54/2 ......100/2
Chứng minh 1*3*5*...*99=51/2*52/2*53/2*...*100/2
Mik chịu.Khó quá
Chứng minh : 51/2 x 52/2 x 53/2 x.......x 100/2 = 1 x 3 x 5 x 7 x.......x 99
1.3.5.7........99 = \(\frac{\left(1.3.5.7......99\right)\left(2.4.6......100\right)}{2.4.6......100}\)= \(\frac{1.2.3......99.100}{2^{50}\left(1.2.3.....50\right)}=\frac{51.52.53.......100}{2.2.2......2}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)(ĐPCM)
50 số 2
Chứng minh rằng :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{100}\)
Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)
Chứng minh rằng 1×3×5×...×99=51/2×52/2×...×100/2
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
1-1/2+1/3-1/4+1/5-1/6+.....+1/99-1/100=1/51+1/52+1/53+1/54+..+1/100
Xét VT:
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(VT=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=VP\)
=>đpcm
Ta xét vế trái:
\(vt=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(VT=VP\)
Chứng minh rằng :
a,1- 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...... + 1/ 99 - 1/ 100 = 1 / 51 + 1/ 52 + 1/ 53 + ... + 1/ 100
b, A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)
chứng minh rằng
51\2*52\1*...*100\2=1*3*5..*99
51/2* 52/2* ....*100/2 = [ 51*53*55*..*99 ]*[52*54*56*...*100]/2^50
= [ 51*53*55*..*99 ]*[26*27*28*...*50]*2^25/2^50
= [ 51*53*55*..*99 ]*[27**29*...*49]*[26*28*30*..50)/2^25
tiếp tục phân tích 26*28*30*..50 / 2^25 sẽ suy ra kết quả
hok tốt