Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Full Moon
Xem chi tiết
Đen đủi mất cái nik
21 tháng 10 2018 lúc 20:07

Ta có:

\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)

\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)

\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)

\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Lại có:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)

\(\)

trần hoa
Xem chi tiết
bảo nam trần
12 tháng 8 2019 lúc 19:30

Ta có : \(a+b^2⋮a^2b-1\) suy ra \(a+b^2=k\left(a^2b-1\right)\left(k\in N^{sao}\right)\)

\(\Leftrightarrow a+k=b\left(ka^2-b\right)\) hay \(mb=a+b\left(1\right)\) với \(m=ka^2-b\in Z^+\)

\(\Leftrightarrow m+b=ka^2\left(2\right)\)

Từ (1) và (2) suy ra \(mb-m-b+1=a+b-ka^2+1\)

\(\Leftrightarrow\left(m-1\right)\left(b-1\right)=\left(a+1\right)\left(k+1-ka\right)\left(3\right)\)

\(m,b\in Z^+\Rightarrow\left(m-1\right)\left(b-1\right)\ge0\)

Do đó từ (3) suy ra \(\left(a+1\right)\left(k+1-ka\right)\ge0\)

Lại vì a > 0 nên suy ra \(k+1-ka\ge0\Rightarrow1\ge k\left(a-1\right)\)

\(a-1\ge0,k>0\) nên \(1\ge k\left(a-1\right)\ge0\)

\(k\left(a-1\right)\in Z\)

\(\Rightarrow k\left(a-1\right)=0\) hoặc \(k\left(a-1\right)=1\)

=> a=1 hoặc \(\left\{{}\begin{matrix}a=2\\k=1\end{matrix}\right.\)

- Với a=1 thay vào (3) ta có:(m-1)(b-1)=2

\(\Leftrightarrow\left\{{}\begin{matrix}b-1=1\\m-1=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b-1=2\\m-1=1\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}b=2\\m=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b=3\\m=2\end{matrix}\right.\)

TH b=2,m=3 suy ra 5=ka2 => a=1

TH b=3,m=2 => a=1

- Với a=1, k=1 thay vào (3): (m-1)(b-1)=0 <=> m=1 hoặc b=1

TH b=1 => a=2

TH m=1, từ (1) => a+k=b => b=3 => a=2

Vậy 4 cặp số (a;b) thỏa mãn là (1;2);(1;3);(2;3);(2;1)

Aeris
Xem chi tiết
Girl
9 tháng 7 2019 lúc 9:57

Cần chứng minh: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)

Thật vậy: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\Leftrightarrow\left(4b-a\right)\left(ab+5b^2\right)-19b^3+a^3\ge0\)

\(\Leftrightarrow4ab^2+20b^3-a^2b-5ab^2-19b^3+a^3\ge0\)

\(\Leftrightarrow\left(a^3+b^3\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

"=" khi a=b

Tương tự: \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b;\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)

Cộng theo vế: 

\(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le4b-a+4c-b+4a-c=3\left(a+b+c\right)=3\)

Dấu "=" xảy ra khi a=b=c=1/3

Anh đẹp traiii
Xem chi tiết
Đặng Minh Đức
2 tháng 2 2017 lúc 19:21

trước hết ta cần chứng minh \(\frac{19b^3-a^3}{ab+5a^2}\le4b-a\left(1\right)\)

\(\left(1\right)\Leftrightarrow19b^3-a^3\le\left(4b-a\right)\left(ab+5a^2\right)\left(ab+5a^2>0\right)\)

phá ngoặc và biến đổi thành bất đẳng thức quen thuộc\(a^3+b^3\ge\left(a+b\right)ab\)với a,b dương

để cm bất đẳng thức này ta cần biến đổi tương đương thành\(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b)

chứng minh tương tự ta có VT\(\le\)4b-a+4c-b+4a-c\(=\)3(a+b+c)

để tham khảo thêm bạn có thể vào toán học tuổi trẻ số 440

phạm minh tâm
Xem chi tiết
Phung Phuong Nam
18 tháng 1 2018 lúc 20:00

BĐT ĐÚNG K BN

phạm minh tâm
18 tháng 1 2018 lúc 20:23

chac dung

Kiệt Nguyễn
16 tháng 2 2020 lúc 16:26

Ta có: \(a^2+b^2-ab\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+20b^3\ge19b^3+ab\left(a+b\right)\Leftrightarrow20b^3-ab\left(a+b\right)\)\(\ge19b^3-a^3\)

\(\Leftrightarrow b\left(20b^2-ab-a^2\right)\ge19b^3-a^3\)\(\Leftrightarrow b\left(20b^2-5ab+4ab-a^2\right)\ge19b^3-a^3\)

\(\Leftrightarrow b\left[5b\left(4b-a\right)+a\left(4b-a\right)\right]\ge19b^3-a^3\)

\(\Leftrightarrow b\left(5b+a\right)\left(4b-a\right)\ge19b^3-a^3\)\(\Leftrightarrow\left(5b^2+ab\right)\left(4b-a\right)\ge19b^3-a^3\)

\(\Leftrightarrow\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)

Tương tự ta có: \(\frac{19c^3-b^3}{cb+5c^2}\le4c-b;\)\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)

Cộng từng vế của các BĐT trên, ta được: 

\(\text{​​}\text{​​}\text{Σ}_{cyc}\frac{19b^3-a^3}{ab+5b^2}\le4\left(a+b+c\right)-\left(a+b+c\right)=3\left(a+b+c\right)\)

Dấu "=" xảy ra khi a = b = c

Khách vãng lai đã xóa
Nguyễn Đức Duy
Xem chi tiết
Nguyễn Thị Thanh Hiền
Xem chi tiết
Akai Haruma
22 tháng 10 2023 lúc 8:16

Đề bị lỗi hiển thị hay sao ấy, mình không nhìn thấy BĐT/ đẳng thức bạn muốn chứng minh.

Đạt Trần Tiến
Xem chi tiết
Lightning Farron
4 tháng 5 2018 lúc 17:07

Sửa \(\dfrac{1}{3}\rightarrow3\)

Từ \(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)

Ta có: \(\dfrac{1}{a^2}+1\ge\dfrac{2}{a};\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab};\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ac}\)

Cộng theo vế các BĐT trên ta có:

\(3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\Leftrightarrow3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge12\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\ge4\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)

\("="\Leftrightarrow a=b=c=1\)

Nguyễn Huy Thắng
3 tháng 5 2018 lúc 23:01

để sau nha giờ bận .-.

Nguyễn Văn Vũ
Xem chi tiết
Thiên An
1 tháng 7 2017 lúc 9:42

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)