Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fairy Tail
Xem chi tiết
Dương Trần Trí Minh
22 tháng 11 2017 lúc 20:18

đề sai rùi

alibaba nguyễn
23 tháng 11 2017 lúc 8:48

\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)

Điều kiện: \(x,y\ge0\)

Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ

Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)

\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)

Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)

\(\Leftrightarrow x=y\)

Thế vô (1) ta được:

\(2x^{2017}=1\)

\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)

Vũ Đức Vương
23 tháng 11 2017 lúc 12:29

alibaba Nguyễn làm đúng rùi

Thanh Tu Nguyen
Xem chi tiết
Lê Ngọc Duyên
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 1 2022 lúc 23:13

Đặt \(S=1+5+5^2+5^3+...+5^{2016}\)

\(\Rightarrow5S=5+5^2+5^3+...+5^{2017}\)

\(\Rightarrow4S=5S-S=5+5^2+...+5^{2017}-1-5-...-5^{2016}=5^{2017}-1\)

\(\Rightarrow S=\dfrac{5^{2017}-1}{4}\)

Theo đề bài ta được: \(S.\left|x-1\right|=5^{2017}-1\)

\(\Leftrightarrow\dfrac{5^{2017}-1}{4}.\left|x-1\right|=5^{2017}-1\Leftrightarrow\dfrac{\left|x-1\right|}{4}=1\)

\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Tôi Là Ai
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 11 2016 lúc 19:11

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

trần gia bảo
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Huy Rio
3 tháng 11 2016 lúc 17:43

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

Nhữ Tuệ Nhân
Xem chi tiết
Nguyễn Thùy Trang ( team...
17 tháng 9 2020 lúc 20:21

\(\left(\left|x\right|+2017\right)\left(504\left|x\right|-2016\right)< 0\)

\(\Leftrightarrow\left|x\right|+2017\)và \(504\left|x\right|-2016\)trái dấu

mà \(\left|x\right|+2017>0\forall x\)

\(\Leftrightarrow504\left|x\right|-2016< 0\)

\(\Leftrightarrow504\left|x\right|< 2016\)

\(\Leftrightarrow\left|x\right|< 4\)

\(\Leftrightarrow-4< x< 4\) mà x là số nguyên 

\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3\right\}\)

Khách vãng lai đã xóa
Trần Công Mạnh
17 tháng 9 2020 lúc 20:22

Bg

Ta có: (|x| + 2017)(504|x| - 2016) < 0  (x\(\inℤ\))

Mà |x| + 2017 > 0 

Để biểu thức < 0 thì 504|x| - 2016 < 0

=> 504|x| < 2016

=> |x| < 4

=> |x| \(\in\){0; 1; 2; 3}

=> x \(\in\){0; 1; -1; 2; -2; 3; -3}

Vậy x \(\in\){0; 1; -1; 2; -2; 3; -3}

Khách vãng lai đã xóa