Cho a b c thỏa mãn a+b+c=0 CMR ab+bc+ca < hoặc = 0
chờ a,b,c thỏa mãn a+b+c=0.cmr ab+bc+ca<hoặc bằng 0
Cho a,b,c thỏa mãn: a+b+c=0. CMR: ab+bc+ca<=0
Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca < 0 hoặc = 0
Cho a,b,c thỏa mãn a+b+c=0. Chứng minh rằng ab+bc+ca bé hơn hoặc bằng 0
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
Cho a, b, c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca bé hơn hoặc bằng 0
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
cho abc thỏa mãn a+b+c=0 CMR ab+bc+canhor hơn hoặc bằng 0
bình phương pt a+b+c=0 lên ta đc a^2+b^2+c^2+...=0
mà a^2+b^2+c^2>=0
suy ra 2(ab+ac+bc) bé hơn hoặc bằng 0
hay ab+ac+bc bé hơn hoặc bằng 0
cám ơn tui giải đc roi đăng lên cho có không khí thôi
Cho a, b, c thỏa mãn : a + b + c = 0. CMR: ab + bc + ca \(\le\)0
Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé
em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x
như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0
a+b+c=0\Rightarrow (a+b+c)2=0(a+b+c)2=0
\Rightarrow a2+b2+c2+2(ab+bc+ca)=0a2+b2+c2+2(ab+bc+ca)=0
\Rightarrow 2(ab+bc+ca)=−(a2+b2+c2)2(ab+bc+ca)=−(a2+b2+c2).
Mà a2+b2+c2a2+b2+c2\geq 0\Rightarrow −(a2+b2+c2)−(a2+b2+c2)\leq 0.
Do đó: 2(ab+bc+ca)2(ab+bc+ca)\leq 0
\Rightarrow ab+bc+caab+bc+ca\leq 0.
cho các số thực a, b , c thỏa mãn a+b+c >0; ab+bc+ca>0 và abc>0, CMR a,b,c là các số dương
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.