Tìm các ƯC của 6k+5 và 8k+3 với \(k\in N\)
Tìm 2 số tự nhiên a và b biết
a.a+b=60 và ƯCLN(a,b) + BCNN(a,b)=84
b.a+2b=48 và ƯCLN(a,b) + 3.BCNN(a,b)=144
c.BCNN(a,b)+ ƯCLN(a,b)=2ab
d.a/b=2,6 và ƯCLN(a,b)=5
e.Tìm ƯC của 6k+5 và 8k+3 (k thuộc N)
f.Cho A=n.(n+1)/2 và B=2n+1(n thuộc N*).Tìm ƯCLN(a,b)
MIk đang cần gấp nhé!!!
Tìm ƯC của n+3 và 2n+5 với n€N
Gọi ƯCLN(n+3; 2n+5) là d. Ta có:
n+3 chia hết cho d => 2n+6 chia hết cho d
2n+5 chia hết cho d
=> 2n+6-(2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯC(n+3; 2n+5) = {1; -1}
Tìm ƯC của n+3 và 2n+5 với n thuộc N
Gọi ƯCLN(n+3; 2n+5) là d. Ta có:
n+3 chia hết cho d => 2n+6 chia hết cho d
2n+5 chia hết cho d
=> 2n+6-(2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UC(n+3; 2n+5) = {1; -1}
Tìm ƯC của n+3 và 2n+5 với n thuộc N
Gọi d là UC của n+3 và 2n+5
=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1
mà d là ước của 2n+5 => d là ước của 1 => d = 1
gọi ƯCLN(n+3;2n+5)=d.theo bài ra ta có:
n+3 chia hết cho d
=>2(n+3) chia hết cho d
=>2n+6 chia hết cho d
=>2n+6-2n-5 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(n+3;2n+5)={-1;1}
vậy ƯC(n+3;2n+5)={-1;1}
Các bạn ơi, giúp mk với nha, mk cần gấp lắm!
Tìm ƯC của n+3 và 2n+5 (n thuộc N).
Gọi d là ước chung của n+3 và 2n+5
Ta có : n+3 chia hết cho d
Suy ra (2n+6) - ( 2n+5) chia hết cho d => 1 chia hết cho d.
Vây d = 1
Bạn ơi cho mk hỏi bạn lấy 2n+6 ở đâu?
Tìm ƯC của N+3 và 2N+5 với n thuộc N
Tìm ƯC của hai số n+3 và 2n+5 với n thuộc N
gọi d là ƯC của n+3 và 2n+5
n+2 chia hết cho d => 2(n+2) chia hết cho d => (2n+5)-(2n+4)=1
2n+5 chia hết cho d = 2n +4 chia hết cho d => 1 chia hết cho d => d là ước 1 Ư(1)={1} =>ƯC (n+3 và 2n+5 ) là 1
Tìm ƯC của n+3 và 2n+5
Các bạn giúp mk nha
Gọi ƯC(n + 3; 2n + 5) = d
=> n + 3 ⋮ d => 2(n + 3) ⋮ d hay 2n + 6 ⋮ d (1)
=> 2n + 5 ⋮ d (2)
Từ (1) và (2) => ( 2n + 6 ) - ( 2n + 5 ) ⋮ d
<=> 2n + 6 - 2n - 5 ⋮ d
<=> 1 ⋮ d
=> d thuộc Ư(1) = 1
=> d = 1
=> ƯC(n + 3; 2n + 5) = 1
B1) Tìm ƯC của n + 1 và 3n + 4 với n thuộc tập hợp N.
B2) Tìm ƯC của 30n + 4 và 20n + 3 với n thuộc tập hợp N.
a; Gọi ƯCLN(n + 1; 3n + 4) = d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ 3n + 3 - 3n - 4 ⋮ d
⇒ (3n -3n) - (4 - 3) ⋮ d ⇒ 0 - 1⋮ d ⇒ 1 ⋮ d ⇒ d \(\in\) Ư(1) = 1
Vậy ƯCLN(n + 1; 3n + 4) = 1
ƯC(n +1; 3n +4) = 1
Gọi ƯCLN(30n + 4; 20n + 3) = d
Ta có: \(\left\{{}\begin{matrix}30n+4⋮d\\20n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}60n+8⋮d\\60n+6⋮d\end{matrix}\right.\) ⇒ 60n + 8 - 60n - 6 ⋮ d
⇒ (60n - 60n) +(8 - 6) ⋮ d ⇒ 0 +2 ⋮ d ⇒ 2 ⋮ d
⇒ d \(\in\) Ư(2)
Vậy Ước chung lớn nhất của (30n + 4 và 20n + 3) là 2