Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Gái Mùa Đông
Xem chi tiết
Phạm Thành Đông
2 tháng 3 2021 lúc 23:51

Ta có : 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)

\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))

\(=6\left(x+\frac{1}{x}\right)\)

Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)

\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))

\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)

\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)

Do đó \(x^3+\frac{1}{x^3}=6.3=18\)

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)

Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)

\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)

\(\Rightarrow x^5+\frac{1}{x^5}=125\)

Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)

Khách vãng lai đã xóa
thu
Xem chi tiết
Trà My
12 tháng 7 2017 lúc 23:45

\(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Leftrightarrow x+\frac{1}{x}=3\)(vì x>0)

<=>\(\left(x+\frac{1}{x}\right)^3=27\Leftrightarrow x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}=27\Leftrightarrow x^3+\frac{1}{x^3}+3.3=27\Leftrightarrow x^3+\frac{1}{x^3}=18\)

Xét \(\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=x^5+x^3+\frac{1}{x^3}+\frac{1}{x^5}=x^5+\frac{1}{x^5}+18\)

Mặt khác: 

\(\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=\left(x+\frac{1}{x}\right)\left[\left(x^2+\frac{1}{x^2}\right)^2-2\right]=\left(x+\frac{1}{x}\right)\left(7^2-2\right)=3.47=141\)

=>\(x^5+\frac{1}{x^5}+18=141\Leftrightarrow x^5+\frac{1}{x^5}=123\)

thu
13 tháng 7 2017 lúc 10:25

Cảm ơn bạn rất nhiều kết bạn nha!

thu
13 tháng 7 2017 lúc 10:34

bạn có thể giải thích tại sao lai trừ 2 ko

Ngọc Duyên
Xem chi tiết
Edogawa Conan
13 tháng 8 2020 lúc 22:26

Ta có: \(x^2+\frac{1}{x^2}=14\)(1)

=> \(x^2+\frac{1}{x^2}+2=16\)

<=> \(\left(x+\frac{1}{x}\right)^2=16\)

<=> \(x+\frac{1}{x}=4\) (Vì x > 0)

<=> \(\left(x+\frac{1}{x}\right)^3=4^3\)

<=> \(x^3+3x+\frac{3}{x}+\frac{1}{x^3}=64\)

<=> \(x^3+\frac{1}{x^3}=64-3\left(x+\frac{1}{x}\right)\)

<=> \(x^3+\frac{1}{x^3}=64-3.4=52\) (2)

Từ (1) và (2) nhân vế theo vế:

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=14.52=728\)

=> \(x^5+\frac{1}{x}+x+\frac{1}{x^5}=728\)

=> \(x^5+\frac{1}{x^5}=728-4=724\)

Khách vãng lai đã xóa
I like swimming
Xem chi tiết
Đức Lộc
5 tháng 10 2019 lúc 20:05

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

Nguoi Ngu
Xem chi tiết
nguyenthiluyen
Xem chi tiết
pham trung thanh
13 tháng 12 2017 lúc 20:32

Ta có: \(x^2+\frac{1}{x^2}=7\)

\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Mà x>0

\(\Rightarrow x+\frac{1}{x}=3\)

Lại có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)=3\left(7-1\right)=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}\)

\(\Rightarrow x^5+\frac{1}{x^5}=7.18-3=123\)

Phạm Ngọc Minh
Xem chi tiết
Nguyễn Xuân Anh
5 tháng 10 2018 lúc 23:03

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

Nguyễn Tiến Đạt
Xem chi tiết
Pham Van Hung
6 tháng 10 2018 lúc 17:59

\(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2=7+2=9\)

\(\Rightarrow x+\frac{1}{x}=3\) (vì x > 0)

Mặt khác, \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=3^3-3.3=18\)

Ta có: \(B=x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

                                      \(=7.18-3=123\)

Vậy B = 123

Chúc bạn học tốt.

                            

Đào Thanh Bình
Xem chi tiết