Hãy chứng tỏ :
a. abab chia hết cho 101
b. ab + ba chia hết cho 11
c. ab - ba chia hết cho 9 với a > b
Hãy chứng tỏ
a) abab chia hết 101
b) ab + ba chia hết 11
c) ab - ba chia hết 9 với a> b
a, abab = ab . 101 chia hết cho 101
b, ab + ba
= 10a +b + 10b +a
= 11a + 11b
= 11(a+b) chia hết cho 11
c, ab-ba
=10a+b - (10b+a)
=9a-9b
=9(a-b) chia hết cho 9
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
Chứng tỏ
a , ab( a+b) chia hết cho 2
b , ab+ ba chia hết cho 11
C, aaa chia hết cho 37
d , aaabbb chia hết cho 37
e , ab-ba chia hết cho 9 với a>b
chứng tỏ
a/ ab +ba chia hết cho 11
b/ ba-ab chia hết cho 9 (b>a)
a.Ta có:ab+ba=a.10+b + b.10+a=a(10+1) + b(10 +1) = a.11+b.11=11(a+b)
=> ab+ba chia hết cho 11
b.Ta có:ba-ab=(b.10+a)-(a.10+b)=b.10 + a - a.10-b=b(10-1) - a(10-1)=b.9 - a.9=9(b-a)
=>ba-ab chia hết cho 9
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
Bài 1: chứng tỏ rằng
a) (ab - ba) chia hết cho 9 với a > b
b) (ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) (abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
Chứng tỏ rằng:
a)ab-ba chia hết cho 9
b)Nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha